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Abstract

To an unappreciated degree, research both in operating
systems andtheir programming languageshasbeen severely
hampered by the lack of cleanly reusable code providing
mundanelow-level OSinfrastructuresuch asbootstrapcode
and devicedrivers. The Flux OSToolkit solvesthisproblem
by providing a set of clean, well-documented components.
These components can be used as basi ¢ building blocks both
for operating systems and for booting language run-time
systems directly on the hardware. Thetoolkit’simplementa-
tionitself embodies reuse techniques by incor porating com-
ponents such as device drivers, file systems, and network-
ing code, unchanged, from other sources. e believe the kit
also makes feasiblethe production of highly assured embed-
ded and operating systems: by enabling reuse of low-level
code, the high cost of detailed verification of that code can
be amortized over many systems for critical environments.
The OS toolkit is already heavily used in several different
OS and programming language projects, and has already
catalyzed research and development that would otherwise
never have been attempted.
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1 Introduction

As operating system functionality continues to expand
and diversify, itisincreasingly impractical for asmall group
to implement even a basic useful OS core—e.g., the func-
tionality traditionally found in the Unix kernel—entirely
from scratch. Furthermore, in most research domains, only
afew specific areas provide fodder for interesting research
topics. For example, from reading an OS conference pro-
ceedings, one might be given the impression that build-
ing an OS “only” involves writing a virtua memory sys-
tem, an IPC system, a file system, a scheduler, some fast
local-area network code, and a profiler to produce nice bar
charts. However, as any experienced OS builder knows,
many of the problems involved in building an OS have a-
ready been solved countlesstimes, and just aren’t interest-
ing to researchers. For example, any redistic OS, in or-
der to be useful even for research, typicaly includes boot
loader code, kernel startup code, variousdevicedrivers, ker-
nel printf and mal | oc code, akernd debugger, etc. A
research project starting a new OS compl etely from scratch
would invariably spend at least the first six months ssimply
writing such infrastructure“grunge’ before even starting on
the interesting aspects of the OS.

1.1 Reated work

Most OS researchers have realized this problem of high
startup cost, and have resorted to cannibalizing BSD, Mach,
or other freely available OSes rather than reinventing the
wheel. Mach used BSD, Linux [13], and vendors device
drivers, SPIN [3] uses device drivers from FreeBSD; and
VINO [17] takesitsdevicedrivers, bootstrap code, and low-
level support for virtual memory from NetBSD.

Whilethis approach savestime, the devel oper must man-

ually examine and dissect the old OS; it would save even
more time if the developer could simply obtain a set of



clearly-documented components. It would also enable re-
search by those whose primary expertise is in areas other
than operating systems, e.g., programming language re-
searcherswhowishto exploretheeffects of higher-level lan-
guagesrunningdirectly onthe hardware. Thisisthepurpose
of the Flux OS Toolkit.

Recent research projectssuch as Exokernd [6], SPIN [3],
and VINO [17], focus on creating extensible systems which
allow applicationsto modify the behavior of the core OSto
suit their particular needs. However, these systems still de-
fineaparticular, fixed set of “core” functionality and aset of
policies by which the core can be used and extended. The
OS Toolkit, in contrast, makes no attempt to be a useful OS
initself and doesnot defineany particul ar set of “core” func-
tionality, but merely provides a suite of components from
which real OSes can be built.

Other approaches involved creating an operating system
built from a complex object-oriented framework, such as
in the Choiceq[5] or Taligent [15] work. Although such
efforts have been influential in other OS projects, such as
Spring, they do not appear to have been widely used. Incon-
trast, the OS Kit exhibits a less ambitious, but more prag-
matic, and we believe more effective, approach to software
design and re-use. Gabridl distinguished two approaches
to software design and implementation, sardonically label-
ing them “The Right Thing” and “Worse is Better” [12].
The former is characterized by interface perfection at the
cost of implementation complexity (e.g., Lisp with CLOS),
wheress the latter sacrifices interface elegance and com-
pleteness for simplicity of implementation (e.g., Unix and
C). Gabriel makes astrong case that “WorseisBetter” isthe
more sucessful approach, and webdlieve that the OSKit ex-
emplifiesthislesson.

1.2 Historical genesisof the OS Toolkit

Wefollowed the cannibalization approach in our own OS
research for sometime. However, starting in 1995, that ap-
proach gradually evolved, resultingin what became the Flux
OS Toolkit, or “OS Kit”. Because we were finding our ver-
sion of Mach [11] too constraining a vehicle in which to
prototype new ideas, we developed a series of experimen-
tal kernelsto try out ideas before designing our Fluke ker-
nel [10]. In doing so, we gradually modularized and for-
malized the libraries of support code we devel oped, proto-
typing the OS Kit along the way. These experimenta ker-
nelsembodied radical changesto fundamental aspectsof OS
structure which would have been impossible to explore in
an existing operating system. One of these kernels explored
implementations of high performance kernel-mediated ca-
pabilitiesand I PC paths, and took about 2 weeksto develop
from scratch; the other exploredinterruptibility of kernel op-
erations at arbitrary points (finding a more final expression

in Fluke satomic operations[18]), which took only amonth.
We have found this ability to prototyperadica designsina
“real” kernel to becrucial to choosing designsthat areworth
fully developing.

2 Toolkit design

The Flux OS Toolkit is aframework and set of modular-
ized library code, together with extensive documentation[9]
for the construction of operating system kernels, servers,
and other core OS functionality. The god is for develop-
erstotake the OS Kit and immediately have a starting point
for investigating “real” OS issues such as scheduling, VM,
IPC, file systems, or security. Researchers in programming
languagesfor systems software benefit aswell, asthetoolkit
makes it easy to runlanguage systems on the bare hardware.

The intention of this toolkit is not to “write the OS for
you”; we certainly want to leave the OS writing to the OS
writer. The dividing line between the “OS’ and the “OS
Toolkit,” aswe seeiit, isbasically the line between what OS
writers want to write and what they would otherwise have
to write but don’t realy want to. Naturaly this will vary
among different OS groups and developers. If you redly
want to write your own x86 protected-mode startup code, or
have found a clever way to do it “better,” you are perfectly
free to do so and simply not use the corresponding code in
our toolkit. However, the OS Kit is modular enough so that
you can till easily use other parts of it to fill in other func-
tional areas you don’'t want to have to deal with yourself (or
areas that you just don’t have timeto do “yet.”)

As such, the toolkit is designed to be usable either as a
whole or in arbitrary subsets, as requirements dictate. It is
useful not only for kernel sbut also for other OS-related pro-
grams, such as boot loaders or servers running on top of a
microkernel.

While the OS Kit currently runs on x86 PCs, it is de-
signed to be portableto other architectures, and most of the
OS Kit's exported interfaces are architecture-neutral. Most
of the heavily architecture-specific aspects of the OSKit are
isolated in a single component, the low-level kerndl support
library, whose purposeis to provide easy access to the raw
privileged-mode hardware facilities without adding over-
head or obscuring the underlying abstractions. For exam-
ple, onthe x86, the kernel support library includesfunctions
to directly creaste and manipulate x86 page tables and seg-
ment registers. Other OS Kit components can, and often
do, provide higher-level architecture-neutral facilities built
on these low-level mechanisms; however, the architecture-
specific interfaces dwaysremain blein order to pro-
vide maximum flexibility.



3 Sample components

The toolkit currently contains fifteen major libraries,
ranging from uniprocessor and multiprocessor bootstrap
code, through memory management, to support for popular
file systems and disk partitioning schemes.! In the follow-
ing sections we briefly describe some of these components.

3.1 Kerne bootstrap support

Oneof thetime-honored waysto wastetimein aresearch
project is to write a boot loader for anew OS: as an invio-
late rule, each new OS must have its own boot loader, and
that boot |oader must be incompatiblewith those of al other
operating systems. Furthermore, each OS often has several
boot loaders: one to boot from the hard disk, one to boot
from across the network (this“one” often multiplied by the
number of distinct Ethernet cards to be supported), one to
boot from an existing OS such asMS-DOS, etc.

While searching for a good bootstrap solution for our
own OS research, we examined the bootstrap mechanisms
of anumber of existing systems, and found that the diversity
of existing mechanisms was caused not by any fundamental
difference in the bootstrap service required by the OS, but
instead merely by the completely ad hoc way in which boot
loaders are typically constructed. In other words, because
boot |oaders are so fundamentally uninteresting, OS devel-
opers felt compelled to produce a minimal quick-and-dirty
design, which resultsin thisboot loader being unsuitablefor
thenext OS dueto dight differencesin design philosophy or
requirements.

To solvethisproblem, we worked with key peopleinvar-
iousother OS projectsto producethe MultiBoot standard [ 8]
for x86 PCs, which is a standard interface between a boot
loader and an OS so that any compliant boot |oader can |oad
any compliant OS. This standard interface includes features
needed by advanced systems but typically not cleanly sup-
ported by existing boot | oaders, such as support for boot im-
ages of unlimited size and boot images consisting of mul-
tiple distinct files. We then incorporated al the necessary
support code into the OS Kit to make it trivial to create
MultiBoot-compliant OS kernels, and included a set of sim-
ple MultiBoot-compliant boot loaders. A more complete
and powerful MultiBoot-compatibleboot |oader, GRUB [4],
isalso available as a separate package. Theresultisthat, us-
ing the OS toolkit, writing a “Hello World” OS kernd that

1 The OS Kit currently includes the following libraries: low-level ker-
nel bootstrapping and support, multiprocessor support, alist-based memory
manager, an addressmap manager, aminimal C library, memory allocation
debugging, disk partitioning, file system reading, program loading, a math
library, devicedrivers, the NetBSD Fast File System, and the FreeBSD and
x-kernel network protocol stacks.

bootsfrom standard boot loadersis as easy aswriting an or-
dinary “Hello World” applicationin C.

The OSKit also providesthe necessary codetoinitialize
and start multiple processors in a symmetric multiprocess-
ing (SMP) system. Of course, itistill up to the OS writer
to make the overal OS SMP-sefe.

For convenience, some partsof the OSKit, such asitsde-
fault console 1/0 and debugging support, are designed to be
automatically SMP-safe; other parts of the OS Kit can ess-
ily be made SMP-safe but require the OS writer to provide
the appropri ate synchronization mechanisms at the individ-
ual component level. Since the components do not gener-
ally contain fine-grained synchronization internally, higher-
level components, such as the file system and the network-
ing code, will work, but not exhibit optimal paralld per-
formance. However, the low-level components are small
enough to providean appropriatelevel of granularity intyp-
ical situations.

3.2 Memory management

Another aspect of OSimplementation that often involves
a large amount of uninteresting work is physica memory
management. Many research operating systems support-
ing virtual memory start out simply by keeping free phys-
ical pages on alist; systems that don’t support virtual mem-
ory typically use asimple mal | oc-like allocator of some
kind. Unfortunately, in practice, al hopes of using such
clean, simple solutions are quickly dashed as soon as the
unsuspecting OS attempts to support real hardware, which
invariably proves to be painfully picky. For example, de-
vices often require the use of contiguous physica memory
blocks larger than a page in size, requiring the VM system
to scrounge through page lists for contiguous pages. Even
less well-behaved devices are extremely common: many
DMA devices on PCsrequire contiguousbuffersin thelow-
est 16MB of physical memory. In general, operating sys-
tems must efficiently manage address spaces of all types,
such as virtual address spaces, paging spaces, block or page
maps, etc.; these are precisdly the kinds of grimy issues that
OS researchers don’'t have time to worry about, but must be
solved if the OSis ever to become “real” in any sense.

To address these memory management issues, the OS
Kit includes a set of simple, but extremely flexible, mem-
ory management support libraries. The list-based memory
manager, or LMM, provides powerful and efficient prim-
itives for managing allocation of either physical or virtual
memory, in kerndl or user-level code, and includes support
for managing multiple “types’ of memory in a pool, and
for alocations with various type, size, and alignment con-
gtraints. The address map manager, or AMM, is designed
to manage address spacesthat don’t necessarily map directly



tophysical or virtual memory; it providessimilar support for
other aspects of OSimplementati on such asthe management
of processes address spaces, paging partitions, free block
maps, or | PC namespaces.

3.3 Minimal C library

Mature OS kernels typicaly contain a considerable
amount of code that merely reimplements basic C library
functionality such aspri nt f and mal | oc. Thisisdone
because the “real” C library implementations of these func-
tionsmake too many assumptions about the surrounding en-
vironment and arenot flexibleenoughtowork in akerne en-
vironment. For example, the standard C library’spri nt f
includes amass of complicated buffering code, which uses
many different system calls, terminal-related i oct | s, and
dynamic memory alocation, when all that the kernel redlly
needs is ssimple formatted console output. Similarly, stan-
dard mal | oc implementations make fundamenta assump-
tionsabout the layout of a process's address space, e.g., that
theheap isarbitrarily growableusingsbr k, and will dways
be contiguous and monotonically increasing.

The OS Kit includes a minima C library that provides
common C library routineswithout al the unnecessary frills
and unwanted assumptions in standard C libraries. For ex-
ample, locales and floating-point are not supported, and the
standard 1/0 calls don’t do any buffering, relying instead
on the underlying read and write operations provided by the
OS. TheClibrary routinesare highly modul arized and well-
separated, preventing the entire library from being linked in
when one function is called. Dependencies between func-
tions are minimized, and those dependencies that do exist
are well-documented, so that individual functionscan bere-
placed as necessary in order to adapt the minimal C library
to arbitrary environments. For example, pri nt f relieson
the OS only to providea put char implementation.

3.4 Devicedrivers

One of the most expensive and boring tasks in OS de-
vel opment and maintenanceis supporting al of thedifferent
kinds of device hardware available. Devices are tricky and
their glitches often undocumented; sometimes only binary
versions of drivers are available. Recognizing the imprac-
ticality of providing our own device support from scratch,
and the advantages of reusing others' code, we made a key
extension to the approach taken in the rest of the OS Kit.

We generalized the approach taken by Goel at Columbia
and Utah, which alowed unchanged Linux devicedriversto
be used by the Mach 3.0 kernel [13]. Asillustrated in Fig-
urel, the OSKit’'sdevice driver support iscomposed of two
cleanly-separated pieces: alarge base of code imported di-
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Figure 1. General OS Kit organization. Although the
OS Kit's components work with each other easily, they
are designed to be well separated from each other, al-
lowing the OS to use them together or in isolation and
to control how they interact with each other. Note that
the relative size of the areas does not reflect the com-
ponents’ sizes.

rectly from an existing OS, and a small surrounding layer of
“glue code’ that mimics the execution environment of the
donor OS. This design allows the device driversto operate
obliviousto their true surroundingsin environments vastly
different from those for which they were originaly written,
such as in preemptive or multiprocessor kernels, or evenin
user-mode processes. For example, in addition to provid-
ing basic functions and variables that the drivers reference,
the Linux glue code a so invisibly emulates Linux’s current
process abstraction so that thedriverscan beruninenviron-
ments in which the process abstraction is completely differ-
ent or even nonexistent. The glue code surrounding theim-
ported code hidesthe detail s of the original OS environment
from the developer and in its place presents clean, simple,
well-defined deviceinterfaces. These deviceinterfaces con-
formto asmall subset of the Component Object Model [14],
namely theinterface querying and reference counting mech-
anisms, which alow them to be cleanly extended and up-
dated over time and facilitate future binary-level compati-
bility.

This design required almost no modifications to the de-
vice drivers themsalves, which vastly simplifies the task of
keeping the drivers up-to-date with the newest versions of
the donor operating system. Of course, the glue code till
hasto be updated to deal with changesinthedrivers overall



native environment, but thisis much simpler than updating
all the device drivers manually. The use of binary versions
of drivers, such as NetWare's ODI drivers, should aso be
possible, athough we have not yet attempted this.

The OS Kit currently incorporates over 50 existing Eth-
ernet and disk device driversfrom Linux 2.0.29; fewer than
150 lines out of 80,000 were modified or added, mostly
in header files. Some of these changes were to override
macros for memory mappings and enabling/disabling in-
terrupts, some fixed bugs that exist in Linux; and a few
were added for debugging. The remainder were changes
that added data structure el ementsrequired by the glue code,
or defined different macros for operations; for example, we
modified Linux’sskbuf f structure, which isused to store
network packets.

Naturally, the flexibility provided by the framework
sometimes imposes a performance cost, depending on the
environment and the way thedriversare used. For instance,
Linux uses contiguous buffers for network data, while
many systems use more complex scatter-gather buffers, e.qg.,
nmbuf s; thus using Linux drivers with BSD-derived net-
working code requires an extra copy on the send path.?
However, even in projectsintending to write custom device
driversspecifically optimized for the OSin question, shrink-
wrapped OS Kit device drivers are till very useful. Since
OSKit device drivers can coexist with custom drivers, they
can be used as a base while custom drivers are being devel -
oped, and also to provide broader hardware coverage.

Note that athough the OS Kit's device drivers would
seem at first to be highly machine-dependent, severa of the
origina Linux driversit contains are aready used on non-
x86 platforms supported by Linux such as Alpha, MIPS,
and PowerPC (athough many others still have embedded
x86 assembly). When NetBSD drivers are supported, we
will gain more portability, since NetBSD has gone further
in separating out machine-dependent code from the device
drivers.

4 Reusable specification and verification

We are exploring one other aspect of the OSKit. In ad-
dition to saving devel opment time and money in OS design,
the OS Kit also presents the possibility of reusable verifica
tion. Verification is an extremely expensive activity, and is
usually carried out at the operating system API level. Even
for an A1 security evaluation, the low-level codeisnot re-
quired to be formally verified, primarily due to the inordi-
nate cost of the verification, and the fact that the infrastruc-
ture code was never or rarely reused. It isnot just the se-
curity community that requires correct functioning: critical

2 Thisimportant caseis onereason we are integrating an alternate set of
network driversfrom NetBSD.

systems are being devel oped now to run on OSes that can-
not support their safety, security, or reliability requirements.
Also, many critical systemsrun asembedded systemswhose
infrastructure needs are a good match to the OS Kit's li-
braries. In embedded systems the OS Kit’'s code would con-
gtitute a higher fraction of the total code than in full-blown
operating systems, which isfurther evidence of the value of
pursuing reusable verification of OS Kit components.

5 Current status

An early version of the OS Kit has been released pub-
licly in betatest form and is available from htt p:// -
www. cs. ut ah. edu/ proj ects/ flux. The OS Kit
currently consists of about 3,500 public header filelinesand
220,000 lines of code. Of these, 207,000 lines are reused
virtually unmodified from existing sources, so the OS Kit's
mai ntenance burden only consists of the remaining 13,000
linesof “native’” OSKit code, 23% of which isx86-specific.
All line counts were taken after filtering out comments,
blank lines, preprocessor directives, and punctuation-only
lines(e.g., linescontaining only abrace); theresult typically
runs 1/4 to 1/2 the size of the unfiltered code.

5.1 Existing uses of the OS Toolkit

Our Fluke microkernel [10] putsamost al of the OSKit
to use, and in fact over haf of the Fluke kernel is OS Kit
code. We used an early version of the OSKitin MOSS[7],
a DOS extender (asmall OS kernd that runs on MS-DOS
and creates a more compl ete process environment for 32-bit
applications), which is being used in commercial products.
Besidesthe experimental kernelsmentioned earlier, we have
used the OSKitinsmaller utilities, such asaspecialized ker-
nel to boot another kernel from the network.

Some of the OS Kit'sexternal users have informed us of
their efforts. At MIT, Olin Shivers et a. are investigating
advanced-language operating systems and usethe OSKit to
run SML/NJon the bare hardware asthe OS[16]. Thisisa
goa the ML community has desired for years but until now
the low-level aspects have presented too much of a barrier.
The SR project at U.C. Davis[2] is exploring using the OS
Kit to run SR directly on the hardware. Here at Utah, we
have aso ported two other languages to the OS Kit, Java
and Smalltalk. The Systems and Communications Group at
the University of Carlos 11l in Spain has employed the OS
Kit in their distributed microkernel-based operating system
project, named Off [1]. The OS Kit is aso being used in
the “bits and pieces microkernd” (bpmk) being devel oped
in Finland.



6 Conclusion

The OS Kit has proven surprisingly powerful and pop-
ular, both at Utah and at externa institutions, greetly aid-
ing research and devel opment in both operating systems and
their implementation languages. The OS Kit's relatively
mundane |ow-level components, anditsprovision of higher-
level components through software reuse, fill crucial needs
for wide classes of clients.
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