
The Flux OS Toolkit:
Reusable Components for OS Implementation

Bryan Ford Kevin Van Maren Jay Lepreau Stephen Clawson Bart Robinson Jeff Turner
�

Department of Computer Science, University of Utah
Salt Lake City, UT 84112

oskit@cs.utah.edu http://www.cs.utah.edu/projects/flux/

Abstract

To an unappreciated degree, research both in operating
systems and their programming languages has been severely
hampered by the lack of cleanly reusable code providing
mundane low-level OS infrastructure such as bootstrapcode
and device drivers. The Flux OS Toolkit solves this problem
by providing a set of clean, well-documented components.
These components can be used as basic buildingblocks both
for operating systems and for booting language run-time
systems directly on the hardware. The toolkit’s implementa-
tion itself embodies reuse techniques by incorporating com-
ponents such as device drivers, file systems, and network-
ing code, unchanged, from other sources. We believe the kit
also makes feasible the production of highly assured embed-
ded and operating systems: by enabling reuse of low-level
code, the high cost of detailed verification of that code can
be amortized over many systems for critical environments.
The OS toolkit is already heavily used in several different
OS and programming language projects, and has already
catalyzed research and development that would otherwise
never have been attempted.
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1 Introduction

As operating system functionality continues to expand
and diversify, it is increasingly impractical for a small group
to implement even a basic useful OS core—e.g., the func-
tionality traditionally found in the Unix kernel—entirely
from scratch. Furthermore, in most research domains, only
a few specific areas provide fodder for interesting research
topics. For example, from reading an OS conference pro-
ceedings, one might be given the impression that build-
ing an OS “only” involves writing a virtual memory sys-
tem, an IPC system, a file system, a scheduler, some fast
local-area network code, and a profiler to produce nice bar
charts. However, as any experienced OS builder knows,
many of the problems involved in building an OS have al-
ready been solved countless times, and just aren’t interest-
ing to researchers. For example, any realistic OS, in or-
der to be useful even for research, typically includes boot
loader code, kernel startup code, various device drivers, ker-
nel printf and malloc code, a kernel debugger, etc. A
research project starting a new OS completely from scratch
would invariably spend at least the first six months simply
writing such infrastructure “grunge” before even starting on
the interesting aspects of the OS.

1.1 Related work

Most OS researchers have realized this problem of high
startup cost, and have resorted to cannibalizing BSD, Mach,
or other freely available OSes rather than reinventing the
wheel. Mach used BSD, Linux [13], and vendors’ device
drivers; SPIN [3] uses device drivers from FreeBSD; and
VINO [17] takes its device drivers, bootstrap code, and low-
level support for virtual memory from NetBSD.

While this approach saves time, the developer must man-
ually examine and dissect the old OS; it would save even
more time if the developer could simply obtain a set of
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clearly-documented components. It would also enable re-
search by those whose primary expertise is in areas other
than operating systems, e.g., programming language re-
searchers who wish to explore the effects of higher-level lan-
guages runningdirectly on the hardware. This is the purpose
of the Flux OS Toolkit.

Recent research projects such as Exokernel [6], SPIN [3],
and VINO [17], focus on creating extensible systems which
allow applications to modify the behavior of the core OS to
suit their particular needs. However, these systems still de-
fine a particular, fixed set of “core” functionality and a set of
policies by which the core can be used and extended. The
OS Toolkit, in contrast, makes no attempt to be a useful OS
in itself and does not define any particular set of “core” func-
tionality, but merely provides a suite of components from
which real OSes can be built.

Other approaches involved creating an operating system
built from a complex object-oriented framework, such as
in the Choices[5] or Taligent [15] work. Although such
efforts have been influential in other OS projects, such as
Spring, they do not appear to have been widely used. In con-
trast, the OS Kit exhibits a less ambitious, but more prag-
matic, and we believe more effective, approach to software
design and re-use. Gabriel distinguished two approaches
to software design and implementation, sardonically label-
ing them “The Right Thing” and “Worse is Better” [12].
The former is characterized by interface perfection at the
cost of implementation complexity (e.g., Lisp with CLOS),
whereas the latter sacrifices interface elegance and com-
pleteness for simplicity of implementation (e.g., Unix and
C). Gabriel makes a strong case that “Worse is Better” is the
more sucessful approach, and we believe that the OS Kit ex-
emplifies this lesson.

1.2 Historical genesis of the OS Toolkit

We followed the cannibalization approach in our own OS
research for some time. However, starting in 1995, that ap-
proach gradually evolved, resulting in what became the Flux
OS Toolkit, or “OS Kit”. Because we were finding our ver-
sion of Mach [11] too constraining a vehicle in which to
prototype new ideas, we developed a series of experimen-
tal kernels to try out ideas before designing our Fluke ker-
nel [10]. In doing so, we gradually modularized and for-
malized the libraries of support code we developed, proto-
typing the OS Kit along the way. These experimental ker-
nels embodied radical changes to fundamental aspects of OS
structure which would have been impossible to explore in
an existing operating system. One of these kernels explored
implementations of high performance kernel-mediated ca-
pabilities and IPC paths, and took about 2 weeks to develop
from scratch; the other explored interruptibilityof kernel op-
erations at arbitrary points (finding a more final expression

in Fluke’s atomic operations [18]), which took only a month.
We have found this ability to prototype radical designs in a
“real” kernel to be crucial to choosing designs that are worth
fully developing.

2 Toolkit design

The Flux OS Toolkit is a framework and set of modular-
ized library code, together with extensive documentation [9]
for the construction of operating system kernels, servers,
and other core OS functionality. The goal is for develop-
ers to take the OS Kit and immediately have a starting point
for investigating “real” OS issues such as scheduling, VM,
IPC, file systems, or security. Researchers in programming
languages for systems software benefit as well, as the toolkit
makes it easy to run language systems on the bare hardware.

The intention of this toolkit is not to “write the OS for
you”; we certainly want to leave the OS writing to the OS
writer. The dividing line between the “OS” and the “OS
Toolkit,” as we see it, is basically the line between what OS
writers want to write and what they would otherwise have
to write but don’t really want to. Naturally this will vary
among different OS groups and developers. If you really
want to write your own x86 protected-mode startup code, or
have found a clever way to do it “better,” you are perfectly
free to do so and simply not use the corresponding code in
our toolkit. However, the OS Kit is modular enough so that
you can still easily use other parts of it to fill in other func-
tional areas you don’t want to have to deal with yourself (or
areas that you just don’t have time to do “yet.”)

As such, the toolkit is designed to be usable either as a
whole or in arbitrary subsets, as requirements dictate. It is
useful not only for kernels but also for other OS-related pro-
grams, such as boot loaders or servers running on top of a
microkernel.

While the OS Kit currently runs on x86 PCs, it is de-
signed to be portable to other architectures, and most of the
OS Kit’s exported interfaces are architecture-neutral. Most
of the heavily architecture-specific aspects of the OS Kit are
isolated in a single component, the low-level kernel support
library, whose purpose is to provide easy access to the raw
privileged-mode hardware facilities without adding over-
head or obscuring the underlying abstractions. For exam-
ple, on the x86, the kernel support library includes functions
to directly create and manipulate x86 page tables and seg-
ment registers. Other OS Kit components can, and often
do, provide higher-level architecture-neutral facilities built
on these low-level mechanisms; however, the architecture-
specific interfaces always remain accessible in order to pro-
vide maximum flexibility.
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3 Sample components

The toolkit currently contains fifteen major libraries,
ranging from uniprocessor and multiprocessor bootstrap
code, through memory management, to support for popular
file systems and disk partitioning schemes.

�

In the follow-
ing sections we briefly describe some of these components.

3.1 Kernel bootstrap support

One of the time-honored ways to waste time in a research
project is to write a boot loader for a new OS: as an invio-
late rule, each new OS must have its own boot loader, and
that boot loader must be incompatible with those of all other
operating systems. Furthermore, each OS often has several
boot loaders: one to boot from the hard disk, one to boot
from across the network (this “one” often multiplied by the
number of distinct Ethernet cards to be supported), one to
boot from an existing OS such as MS-DOS, etc.

While searching for a good bootstrap solution for our
own OS research, we examined the bootstrap mechanisms
of a number of existing systems, and found that the diversity
of existing mechanisms was caused not by any fundamental
difference in the bootstrap service required by the OS, but
instead merely by the completely ad hoc way in which boot
loaders are typically constructed. In other words, because
boot loaders are so fundamentally uninteresting, OS devel-
opers felt compelled to produce a minimal quick-and-dirty
design, which results in this boot loader being unsuitable for
the next OS due to slight differences in design philosophy or
requirements.

To solve this problem, we worked with key people in var-
ious other OS projects to produce the MultiBoot standard [8]
for x86 PCs, which is a standard interface between a boot
loader and an OS so that any compliant boot loader can load
any compliant OS. This standard interface includes features
needed by advanced systems but typically not cleanly sup-
ported by existing boot loaders, such as support for boot im-
ages of unlimited size and boot images consisting of mul-
tiple distinct files. We then incorporated all the necessary
support code into the OS Kit to make it trivial to create
MultiBoot-compliant OS kernels, and included a set of sim-
ple MultiBoot-compliant boot loaders. A more complete
and powerful MultiBoot-compatibleboot loader, GRUB [4],
is also available as a separate package. The result is that, us-
ing the OS toolkit, writing a “Hello World” OS kernel that

�

The OS Kit currently includes the following libraries: low-level ker-
nel bootstrappingandsupport, multiprocessor support, a list-based memory
manager, an address map manager, a minimal C library, memory allocation
debugging, disk partitioning, file system reading, program loading, a math
library, device drivers, the NetBSD Fast File System, and the FreeBSD and
x-kernel network protocol stacks.

boots from standard boot loaders is as easy as writing an or-
dinary “Hello World” application in C.

The OS Kit also provides the necessary code to initialize
and start multiple processors in a symmetric multiprocess-
ing (SMP) system. Of course, it is still up to the OS writer
to make the overall OS SMP-safe.

For convenience, some parts of the OS Kit, such as its de-
fault console I/O and debugging support, are designed to be
automatically SMP-safe; other parts of the OS Kit can eas-
ily be made SMP-safe but require the OS writer to provide
the appropriate synchronization mechanisms at the individ-
ual component level. Since the components do not gener-
ally contain fine-grained synchronization internally, higher-
level components, such as the file system and the network-
ing code, will work, but not exhibit optimal parallel per-
formance. However, the low-level components are small
enough to provide an appropriate level of granularity in typ-
ical situations.

3.2 Memory management

Another aspect of OS implementation that often involves
a large amount of uninteresting work is physical memory
management. Many research operating systems support-
ing virtual memory start out simply by keeping free phys-
ical pages on a list; systems that don’t support virtual mem-
ory typically use a simple malloc-like allocator of some
kind. Unfortunately, in practice, all hopes of using such
clean, simple solutions are quickly dashed as soon as the
unsuspecting OS attempts to support real hardware, which
invariably proves to be painfully picky. For example, de-
vices often require the use of contiguous physical memory
blocks larger than a page in size, requiring the VM system
to scrounge through page lists for contiguous pages. Even
less well-behaved devices are extremely common: many
DMA devices on PCs require contiguous buffers in the low-
est 16MB of physical memory. In general, operating sys-
tems must efficiently manage address spaces of all types,
such as virtual address spaces, paging spaces, block or page
maps, etc.; these are precisely the kinds of grimy issues that
OS researchers don’t have time to worry about, but must be
solved if the OS is ever to become “real” in any sense.

To address these memory management issues, the OS
Kit includes a set of simple, but extremely flexible, mem-
ory management support libraries. The list-based memory
manager, or LMM, provides powerful and efficient prim-
itives for managing allocation of either physical or virtual
memory, in kernel or user-level code, and includes support
for managing multiple “types” of memory in a pool, and
for allocations with various type, size, and alignment con-
straints. The address map manager, or AMM, is designed
to manage address spaces that don’t necessarily map directly
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to physical or virtual memory; it provides similar support for
other aspects of OS implementation such as the management
of processes’ address spaces, paging partitions, free block
maps, or IPC namespaces.

3.3 Minimal C library

Mature OS kernels typically contain a considerable
amount of code that merely reimplements basic C library
functionality such as printf and malloc. This is done
because the “real” C library implementations of these func-
tions make too many assumptions about the surrounding en-
vironment and are not flexible enough to work in a kernel en-
vironment. For example, the standard C library’s printf
includes a mass of complicated buffering code, which uses
many different system calls, terminal-related ioctls, and
dynamic memory allocation, when all that the kernel really
needs is simple formatted console output. Similarly, stan-
dard malloc implementations make fundamental assump-
tions about the layout of a process’s address space, e.g., that
the heap is arbitrarilygrowable usingsbrk, and will always
be contiguous and monotonically increasing.

The OS Kit includes a minimal C library that provides
common C library routines without all the unnecessary frills
and unwanted assumptions in standard C libraries. For ex-
ample, locales and floating-point are not supported, and the
standard I/O calls don’t do any buffering, relying instead
on the underlying read and write operations provided by the
OS. The C library routines are highly modularized and well-
separated, preventing the entire library from being linked in
when one function is called. Dependencies between func-
tions are minimized, and those dependencies that do exist
are well-documented, so that individual functions can be re-
placed as necessary in order to adapt the minimal C library
to arbitrary environments. For example, printf relies on
the OS only to provide a putchar implementation.

3.4 Device drivers

One of the most expensive and boring tasks in OS de-
velopment and maintenance is supporting all of the different
kinds of device hardware available. Devices are tricky and
their glitches often undocumented; sometimes only binary
versions of drivers are available. Recognizing the imprac-
ticality of providing our own device support from scratch,
and the advantages of reusing others’ code, we made a key
extension to the approach taken in the rest of the OS Kit.

We generalized the approach taken by Goel at Columbia
and Utah, which allowed unchanged Linux device drivers to
be used by the Mach 3.0 kernel [13]. As illustrated in Fig-
ure 1, the OS Kit’s device driver support is composed of two
cleanly-separated pieces: a large base of code imported di-
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OS Kernel

Hardware

OSkit provides OSkit provides (from other OS)

Low-level Kernel Support Library

Networking
FreeBSD

MemDebug

AMM
File System

Exec

Minimal libc

Partitioning

Driver Support
libm

Driver Support

Figure 1. General OS Kit organization. Although the
OS Kit’s components work with each other easily, they
are designed to be well separated from each other, al-
lowing the OS to use them together or in isolation and
to control how they interact with each other. Note that
the relative size of the areas does not reflect the com-
ponents’ sizes.

rectly from an existing OS, and a small surrounding layer of
“glue code” that mimics the execution environment of the
donor OS. This design allows the device drivers to operate
oblivious to their true surroundings in environments vastly
different from those for which they were originally written,
such as in preemptive or multiprocessor kernels, or even in
user-mode processes. For example, in addition to provid-
ing basic functions and variables that the drivers reference,
the Linux glue code also invisibly emulates Linux’s current
process abstraction so that the drivers can be run in environ-
ments in which the process abstraction is completely differ-
ent or even nonexistent. The glue code surrounding the im-
ported code hides the details of the original OS environment
from the developer and in its place presents clean, simple,
well-defined device interfaces. These device interfaces con-
form to a small subset of the Component Object Model [14],
namely the interface querying and reference counting mech-
anisms, which allow them to be cleanly extended and up-
dated over time and facilitate future binary-level compati-
bility.

This design required almost no modifications to the de-
vice drivers themselves, which vastly simplifies the task of
keeping the drivers up-to-date with the newest versions of
the donor operating system. Of course, the glue code still
has to be updated to deal with changes in the drivers’ overall
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native environment, but this is much simpler than updating
all the device drivers manually. The use of binary versions
of drivers, such as NetWare’s ODI drivers, should also be
possible, although we have not yet attempted this.

The OS Kit currently incorporates over 50 existing Eth-
ernet and disk device drivers from Linux 2.0.29; fewer than
150 lines out of 80,000 were modified or added, mostly
in header files. Some of these changes were to override
macros for memory mappings and enabling/disabling in-
terrupts; some fixed bugs that exist in Linux; and a few
were added for debugging. The remainder were changes
that added data structure elements required by the glue code,
or defined different macros for operations; for example, we
modified Linux’s skbuff structure, which is used to store
network packets.

Naturally, the flexibility provided by the framework
sometimes imposes a performance cost, depending on the
environment and the way the drivers are used. For instance,
Linux uses contiguous buffers for network data, while
many systems use more complex scatter-gather buffers, e.g.,
mbufs; thus using Linux drivers with BSD-derived net-
working code requires an extra copy on the send path.

�

However, even in projects intending to write custom device
drivers specifically optimized for the OS in question, shrink-
wrapped OS Kit device drivers are still very useful. Since
OS Kit device drivers can coexist with custom drivers, they
can be used as a base while custom drivers are being devel-
oped, and also to provide broader hardware coverage.

Note that although the OS Kit’s device drivers would
seem at first to be highly machine-dependent, several of the
original Linux drivers it contains are already used on non-
x86 platforms supported by Linux such as Alpha, MIPS,
and PowerPC (although many others still have embedded
x86 assembly). When NetBSD drivers are supported, we
will gain more portability, since NetBSD has gone further
in separating out machine-dependent code from the device
drivers.

4 Reusable specification and verification

We are exploring one other aspect of the OS Kit. In ad-
dition to saving development time and money in OS design,
the OS Kit also presents the possibility of reusable verifica-
tion. Verification is an extremely expensive activity, and is
usually carried out at the operating system API level. Even
for an A1 security evaluation, the low-level code is not re-
quired to be formally verified, primarily due to the inordi-
nate cost of the verification, and the fact that the infrastruc-
ture code was never or rarely reused. It is not just the se-
curity community that requires correct functioning: critical

�
This important case is one reason we are integrating an alternate set of

network drivers from NetBSD.

systems are being developed now to run on OSes that can-
not support their safety, security, or reliability requirements.
Also, many critical systems run as embedded systems whose
infrastructure needs are a good match to the OS Kit’s li-
braries. In embedded systems the OS Kit’s code would con-
stitute a higher fraction of the total code than in full-blown
operating systems, which is further evidence of the value of
pursuing reusable verification of OS Kit components.

5 Current status

An early version of the OS Kit has been released pub-
licly in beta-test form and is available from http://-
www.cs.utah.edu/projects/flux. The OS Kit
currently consists of about 3,500 public header file lines and
220,000 lines of code. Of these, 207,000 lines are reused
virtually unmodified from existing sources, so the OS Kit’s
maintenance burden only consists of the remaining 13,000
lines of “native” OS Kit code, 23% of which is x86-specific.
All line counts were taken after filtering out comments,
blank lines, preprocessor directives, and punctuation-only
lines (e.g., lines containing only a brace); the result typically
runs

�����
to

���	�
the size of the unfiltered code.

5.1 Existing uses of the OS Toolkit

Our Fluke microkernel [10] puts almost all of the OS Kit
to use, and in fact over half of the Fluke kernel is OS Kit
code. We used an early version of the OS Kit in MOSS [7],
a DOS extender (a small OS kernel that runs on MS-DOS
and creates a more complete process environment for 32-bit
applications), which is being used in commercial products.
Besides the experimental kernels mentioned earlier, we have
used the OS Kit in smaller utilities, such as a specialized ker-
nel to boot another kernel from the network.

Some of the OS Kit’s external users have informed us of
their efforts. At MIT, Olin Shivers et al. are investigating
advanced-language operating systems and use the OS Kit to
run SML/NJ on the bare hardware as the OS [16]. This is a
goal the ML community has desired for years but until now
the low-level aspects have presented too much of a barrier.
The SR project at U.C. Davis [2] is exploring using the OS
Kit to run SR directly on the hardware. Here at Utah, we
have also ported two other languages to the OS Kit, Java
and Smalltalk. The Systems and Communications Group at
the University of Carlos III in Spain has employed the OS
Kit in their distributed microkernel-based operating system
project, named Off [1]. The OS Kit is also being used in
the “bits and pieces microkernel” (bpmk) being developed
in Finland.
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6 Conclusion

The OS Kit has proven surprisingly powerful and pop-
ular, both at Utah and at external institutions, greatly aid-
ing research and development in both operating systems and
their implementation languages. The OS Kit’s relatively
mundane low-level components, and its provision of higher-
level components through software reuse, fill crucial needs
for wide classes of clients.
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