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Abstract

The exokernel operating system architecture safely gives untrusted
software efficient control over hardware and software resources by
separating management from protection. This paper describes an
exokernel system that allows specialized applications to achieve
high performance without sacrificing the performance of unmod-
ified UNIX programs. It evaluates the exokernel architecture by
measuring end-to-end application performance on Xok, an exo-
kernel for Intel x86-based computers, and by comparing Xok’s
performance to the performance of two widely-used 4.4BSD UNIX
systems (FreeBSD and OpenBSD). The results show that common
unmodified UNIX applications can enjoy the benefits of exoker-
nels: applications either perform comparably on Xok/ExOS and
the BSD UNIXes, or perform significantly better. In addition, the
results show that customized applications can benefit substantially
from control over their resources (e.g., a factor of eight for a Web
server). This paper also describes insights about the exokernel ap-
proach gained through building three different exokernel systems,
and presents novel approaches to resource multiplexing.

1 Introduction

In traditional operating systems, only privileged servers and the
kernel can manage system resources. Untrusted applications are
restricted to the interfaces and implementations of this privileged
software. This organization is flawed because application demands
vary widely. An interface designed to accommodate every appli-
cation must anticipate all possible needs. The implementation of
such an interface would need to resolve all tradeoffs and antic-
ipate all ways the interface could be used. Experience suggests
that such anticipation is infeasible and that the cost of mistakes is
high [1, 4, 8, 11, 21, 39].

The exokernel architecture [11] solves this problem by giving
untrusted applications as much control over resources as possi-
ble. It does so by dividing responsibilities differently from the way
conventional systems do. Exokernels separate protection from man-
agement: they protect resources but delegate management to appli-
cations. For example, each application manages its own disk-block
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cache, but the exokernel allows cached pages to be shared securely
across all applications. Thus, the exokernel protects pages and disk
blocks, but applications manage them.

Of course, not all applications need customized resource man-
agement. Instead of communicating with the exokernel directly, we
expect most programs to be linked with libraries that hide low-
level resources behind traditional operating system abstractions.
However, unlike traditional implementations of these abstractions,
library implementations are unprivileged and can therefore be mod-
ified or replaced at will. We refer to these unprivileged libraries as
library operating systems, or libOSes.

We hope the exokernel organization will facilitate operating sys-
tem innovation: there are several orders of magnitude more applica-
tion programmers than OS implementors, and any programmer can
specialize a libOS without affecting the rest of the system. LibOSes
also allow incremental, selective adoption of new OS features: ap-
plications link with the libOSes that provide what they need—new
OS functionality is effectively distributed with the application bi-
nary.

The exokernel approach raises several questions. Can ambitious
applications actually achieve significant performance improvements
on an exokernel? Will traditional applications—for example, unal-
tered UNIX applications—pay a price in reduced performance? Is
global performance compromised when no centralized authority
decides scheduling and multiplexing policies? Does the lack of a
centralized management policy for shared OS structures lower the
integrity of the system?

This paper attempts to answer these questions and thereby eval-
uate the soundness of the exokernel approach. Our experiments
are performed on the Xok/ExOS exokernel system. Xok is an exo-
kernel for Intel x86-based computers and ExOS is its default libOS.
Xok/ExOS compiles on itself and runs many unmodified UNIX pro-
grams (e.g., perl, gcc, telnet, and most file utilities). We compare
Xok/ExOS to two widely-used 4.4BSD UNIX systems running on
the same hardware, using large, real-world applications.

ExOS ensures the integrity of many of its abstractions using
Xok’s support for protected sharing. Some abstractions, however,
still use shared global data structures. ExOS cannot guarantee UNIX
semantics for these abstractions until they are protected from arbi-
trary writes by other processes. In our measurements, we approxi-
mate the cost of this protection by inserting system calls before all
writes to shared global state.

Our results show that most unmodified UNIX applications per-
form comparably on Xok/ExOS and on FreeBSD or OpenBSD.
Some applications, however, run up to a factor of four faster on
Xok/ExOS. Experiments with multiple applications running con-
currently also show that exokernels can offer competitive global
system performance.

We also demonstrate that application-level control can signifi-
cantly improve the performance of applications. For example, we



describe a new high-performance HTTP server, Cheetah, that ac-
tively exploits exokernel extensibility. Cheetah uses a file system
and a TCP implementation customized for the properties of HTTP
traffic. Cheetah performs up to eight times faster than the best UNIX
HTTP server we measured on the same hardware.

In addition to evaluating the exokernel approach, this paper
presents new kernel interfaces that separate protection from man-
agement. We discuss the disk subsystem, XN, and explain how un-
privileged applications can define new file systems and how these
file systems can safely multiplex the same disk at a fine granularity.
Finally, we summarize what we have learned from building three
complete exokernel systems (Xok, Aegis [11] for DECstations, and
Glaze [29] for the Fugu multiprocessor).

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 summarizes the exokernel architecture. Sec-
tion 4 provides a detailed example of reconciling application control
with protection by presenting the disk system XN. Section 5 briefly
overviews Xok/ExOS, the experimental environment for this paper.
Section 6 reports on the performance of unaltered UNIX applica-
tions, while Section 7 reports on the performance of aggressively-
specialized applications, such as the high-performance Cheetah web
server. Section 8 investigates global performance on an exokernel
system. Section 9 discusses our experiences with building three
different exokernel systems. Section 10 concludes.

2 Related Work

The exokernel architecture was proposed in [11], which described a
research prototype that performed significantly better than Ultrix on
microbenchmarks. While the paper provided evidence that the exo-
kernel approach was promising, it left many questions unanswered.

There is a large literature on extensible operating systems, start-
ing with the classic rationales by Lampson and Brinch Hansen [19,
25, 26]. Previous approaches to extensibility can be coarsely clas-
sified in three groups: better microkernels, virtual machines, and
downloading untrusted code into the kernel. We discuss each in
turn.

The principal goal of an exokernel—giving applications con-
trol—is orthogonal to the question of monolithic versus microkernel
organization. If applications are restricted to inadequate interfaces,
it makes little difference whether the implementations reside in
the kernel or privileged user-level servers [20, 18]; in both cases
applications lack control. For example, it is difficult to change the
buffer management policy of a shared file server. In many ways,
servers can be viewed as fixed kernel subsystems that happen to run
in user space. Whether monolithic or microkernel-based, the goal
of an exokernel system remains for privileged software to provide
interfaces that do not limit the ability of unprivileged applications
to manage their own resources.

Some newer microkernels push the kernel interface closer to
the hardware [8, 20, 36], obtaining better performance and robust-
ness than previous microkernels and allowing for a greater degree
of flexibility, since shared monolithic servers can be broken into
several servers. Techniques to reduce the cost of shared servers
by improving IPC performance, moving code from servers into
libraries, mapping read-only shared data structures, and batching
system calls [2, 18, 28, 30] can also be successfully applied in an
exokernel system.

Virtual machines [5, 12, 17] (VMs) are an OS structure in which
a privileged virtual machine monitor (VMM) isolates less privileged
software in emulated copies of the underlying hardware. Unfortu-
nately, emulation hides information. This can lead to ineffective
use of hardware resources; for instance, the VMM has no way of
knowing if a VM no longer needs a particular virtual page. More-
over, VMs can only share resources through remote communication
protocols. This prevents VMs from sharing many OS abstractions
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Figure 1: A simplified exokernel system with two applications, each
linked with its own libOS and sharing pages through a buffer cache
registry.

such as processes or file descriptors with each other. Thus, VMMs
confine specialized operating systems and associated processes to
isolated virtual machines, while exokernels let applications use cus-
tomized libOSes without sacrificing a single view of the machine,

Downloading code into the kernel is another approach to ex-
tensibility. In many systems only trusted users can download code,
either through dynamically-loaded kernel extensions or static con-
figuration [13, 21]. In the SPIN and Vino systems, any user can
safely download code into the kernel [4, 39]. Safe downloading of
code through type-safety [4, 37] and software fault-isolation [39, 42]
is complementary to the exokernel approach of separating protec-
tion from management. Exokernels use downloading of code to let
the kernel leave decisions to untrusted software [11].

In addition to these structural approaches, much work has been
done on better OS abstractions that give more control to appli-
cations, such as user-level networking [40, 41], lottery schedul-
ing [43], application-controlled virtual memory [22, 27] and file
systems [6, 35]. All of this work is directly applicable to libOSes.

3 Exokernel Background

This section briefly summarizes the exokernel architecture. Fig-
ure 1 shows a simplified exokernel system that is running two appli-
cations: an unmodified UNIX application linked against the ExOS
libOS and a specialized exokernel application using its own TCP
and file system libraries. Applications communicate with the kernel
using low-level physical names (e.g., block numbers); the kernel
interface is as close to the hardware as possible. LibOSes handle
higher-level names (e.g., file descriptors) and supply abstractions.

We briefly describe the exokernel principles, motivated in [11].
These principles illustrate the mechanics of exokernel systems and
provide important motivation for many design decisions discussed
later in this paper. In addition, we show how the principles can be
applied and discuss the general issue of protected sharing.

3.1 Exokernel principles
The goal of an exokernel is to give efficient control of resources
to untrusted applications in a secure, multi-user system. We follow
these principles to achieve this goal:

Separate protection and management. Exokernels provide
primitives at the lowest possible level required for protection—
ideally, at the level of hardware (disk blocks, context identifiers,
TLB, etc.). Resource management is restricted to functions neces-
sary for protection: allocation, revocation, sharing, and the tracking
of ownership.
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Expose allocation. Applications allocate resources explicitly.
The kernel allows specific resources to be requested during alloca-
tion.

Expose names. Exokernels use physical names wherever pos-
sible. Physical names capture useful information and do not require
potentially costly or race-prone translations from virtual names.

Expose revocation. Exokernels expose revocation policies to
applications. They let applications choose which instance of a re-
source to give up. Each application has control over its set of phys-
ical resources.

Expose information. Exokernels expose all system information
and collect data that applications cannot easily derive locally. For
example, applications can determine how many hardware network
buffers there are or which pages cache file blocks. An exokernel
might also record an approximate least-recently-used ordering of
all physical pages, something individual applications cannot do
without global information.

These principles apply not just to the kernel, but to any compo-
nent of an exokernel system. Privileged servers should provide an
interface boiled down to just what is required for protection.

3.2 Kernel support for protected abstractions
Many of the resources protected by traditional operating systems
are themselves high-level abstractions. Files, for instance, consist
of metadata, disk blocks, and buffer cache pages, all of which are
guarded by access control on high-level file objects. While exoker-
nels allow direct access to low-level resources, exokernel systems
must be able to provide UNIX-like protection, including access con-
trol on high-level objects where required for security. One of the
main challenges in designing exokernels is to find kernel interfaces
that allow such higher-level access control without either mandat-
ing a particular implementation or hindering application control of
hardware resources.

Xok meets this challenge with three design techniques. First, it
performs access control on all resources in the same manner. Sec-
ond, Xok provides software abstractions to bind hardware resources
together. For example, as shown in Figure 1, the Xok buffer cache
registry binds disk blocks to the memory pages caching them. Ap-
plications have control over physical pages and disk I/O, but can
also safely use each other’s cached pages. Xok’s protection mech-
anism guarantees that a process can only access a cache page if it
has the same level of access to the corresponding disk block. Third,
and most general, some of Xok’s abstractions allow applications
to download code. This is required for abstractions whose protec-
tion does not map to hardware abstractions. For example, files may
require valid updates to their modification times.

The key to these exokernel software abstractions is that they
neither hinder low-level access to hardware resources nor unduly
restrict the semantics of the protected abstractions they enable.
Given these properties, a kernel software abstraction does not violate
the exokernel principles.

Though these software abstractions reside in the kernel on
Xok, they could also be implemented in trusted user-level servers.
This microkernel organization would cost many additional context
switches; these are particularly expensive on the Intel Pentium Pro
processors on which Xok runs. Furthermore, partitioning function-
ality in user-level servers tends to be more complex.

3.3 Protected sharing
The low-level exokernel interface gives libOSes enough hardware
control to implement all traditional operating system abstractions.
Library implementations of abstractions have the advantage that
they can trust the applications they link with and need not defend
against malicious use. The flip side, however, is that a libOS cannot

necessarily trust all other libOSes with access to a particular re-
source. When libOSes guarantee invariants about their abstractions,
they must be aware of exactly which resources are involved, what
other processes have access to those resources, and what level of
trust they place in those other processes.

As an example, consider the semantics of the UNIX fork system
call. It spawns a new process initially identical to the currently run-
ning one. This involves copying the entire virtual address space of
the parent process, a task operating systems typically perform lazily
through copy-on-write to avoid unnecessary page copies. While
copy-on-write can always be done in a trusted, in-kernel virtual
memory system, a libOS must exercise care to avoid compromising
the semantics of fork when sharing pages with potentially untrusted
processes. This section details some of the approaches we have used
to allow a libOS to maintain invariants when sharing resources with
other libOSes.

The exokernel provides four mechanisms libOSes can use to
maintain invariants in shared abstractions. First, software regions,
areas of memory that can only be read or written through system
calls, provide sub-page protection and fault isolation. Second, the
exokernel allows on the-fly-creation of hierarchically-named capa-
bilities and requires that these capabilities be specified explicitly
on each system call [31]. Thus, a buggy child process acciden-
tally requesting write access to a page or software region of its
parent will likely provide the wrong capability and be denied per-
mission. Third, the exokernel provides wakeup predicates: small,
kernel-downloaded functions that wake up processes when arbi-
trary conditions become true (see Section 5.1 for details). Wakeup
predicates can ensure that a buggy or crashed process will not hang
a correctly behaved one. Fourth, the exokernel provides robust crit-
ical sections: inexpensive critical sections that are implemented by
disabling software interrupts [3]. Using critical sections instead of
locks eliminates the need to trust other processes.

Three levels of trust determine what optimizations can be used
by the implementation of a shared abstraction.

Optimize for the common case: Mutual trust. It is often the
case that applications sharing resources place a considerable amount
of trust in each other. For instance, any two UNIX programs run by
the same user can arbitrarily modify each others’ memory through
the debugger system call, ptrace. When two exokernel processes
can write each others’ memory, their libOSes can clearly trust each
other not to be malicious. This reduces the problem of guaranteeing
invariants from one of security to one of fault-isolation, and conse-
quently allows libOS code to resemble that of monolithic kernels
implementing the same abstraction.

Unidirectional trust. Another common scenario occurs when
two processes share resources and one trusts the other, but the trust
is not mutual. Network servers often follow this organization: a priv-
ileged process accepts network connections, forks, and then drops
privileges to perform actions on behalf of a particular user. Many
abstractions implemented for mutual trust can also function under
unidirectional trust with only slight modification. In the example of
copy-on-write, for instance, the trusted parent process must retain
exclusive control of shared pages and its own page tables, prevent-
ing a child from child making copied pages writable in the parent.
While this requires more page faults in the parent, it does not in-
crease the number of page copies or seriously complicate the code.

Defensive programming for mutual distrust. Finally, there
are situations where mutually distrustful processes must share high-
level abstractions with each other. For instance, two unrelated pro-
cesses may wish to communicate over a UNIX domain socket, and
neither may have any trust in the other. For OS abstractions that can
be shared by mutually distrustful processes, libOSes must include
defensive implementations that give reasonable interpretations to
all possible actions by the foreign process (for instance a socket
write larger than the buffer can be interpreted as an end of file).
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Fortunately, sharing with mutual distrust occurs very infre-
quently for many abstractions. Many types of sharing occur only
between child and parent processes, where mutual or unidirectional
trust almost always holds. Where mutual distrust does occur, defen-
sive sanity checks are often not on the critical path for performance.
In the remaining cases, as is the case for disk files, we have carefully
crafted kernel software abstractions to help libOSes maintain the
necessary invariants.

4 Multiplexing Stable Storage

An exokernel must provide a means to safely multiplex disks among
multiple library file systems (libFSes). Each libOS contains one or
more libFSes. Multiple libFSes can be used to share the same files
with different semantics. In addition to accessing existing files,
libFSes can define new on-disk file types with arbitrary metadata
formats. An exokernel must give libFSes as much control over file
management as possible while still protecting files from unautho-
rized access. It therefore cannot rely on simple-minded solutions
like partitioning to multiplex a disk: each file would require its own
partition.

To allow libFSes to perform their own file management, an
exokernel stable storage system must satisfy four requirements.
First, creating new file formats should be simple and lightweight.
It should not require any special privilege. Second, the protection
substrate should allow multiple libFSes to safely share files at the
raw disk block and metadata level. Third, the storage system must be
efficient—as close to raw hardware performance as possible. Fourth,
the storage system should facilitate cache sharing among libFSes,
and allow them to easily address problems of cache coherence,
security, and concurrency.

This section describes how Xok multiplexes stable storage, both
to show how we address these problems and to provide a concrete
example of the exokernel principles in practice. First, we describe
XN, Xok’s extensible, low-level in-kernel stable storage system.
We also describe the general interface between XN and libFSes
and present one particular libFS, C-FFS, the co-locating fast file
system [15].

4.1 Overview of XN

Designing a flexible exokernel stable storage system has proven
difficult: XN is our fourth design. This section provides an overview
of UDFs, the cornerstone of XN; the following sections describe
some earlier approaches (and why they failed), and aspects of XN
in greater depth.

XN provides access to stable storage at the level of disk blocks,
exporting a buffer cache registry (Section 4.3.3) as well as free
maps and other on-disk structures. The main purpose of XN is to
determine the access rights of a given principal to a given disk
block as efficiently as possible. XN must prevent a malicious user
from claiming another user’s disk blocks as part of her own files.
On a conventional OS, this task is easy, since the kernel itself
knows the file’s metadata format. On an exokernel, where files have
application-defined metadata layouts, the task is more difficult.

XN’s novel solution employs UDFs (untrusted deterministic
functions). UDFs are metadata translation functions specific to each
file type. XN uses UDFs to analyze metadata and translate it into
a simple form the kernel understands. A libFS developer can in-
stall UDFs to introduce new on-disk metadata formats. The re-
stricted language in which UDFs are specified ensures that they are
deterministic—their output depends only on their input (the meta-
data itself). UDFs allow the kernel to safely and efficiently handle
any metadata layout without understanding the layout itself.

UDFs are stored on disk in structures called templates. Each
template corresponds to a particular metadata format; for exam-
ple, a UNIX file system would have templates for data blocks,
inode blocks, inodes, indirect blocks, etc. Each template T has one
UDF: owns-udfT , and two untrusted but potentially nondeterminis-
tic functions: acl-ufT and size-ufT . All three functions are specified
in the same language but only owns-udfT must be deterministic.
The other two can have access to, for example, the time of day. The
limited language used to write these functions is a pseudo-RISC
assembly language, checked by the kernel to ensure determinacy.
Once a template is specified, it cannot be changed.

For a piece of metadata m of template type T , owns-udfT (m)

returns the set of blocks which m points to and their respective
template types. UDF determinism guarantees that owns-udf will
always compute the same output for a given input: XN cannot
be spoofed by owns-udf. The set of blocks owns-udf returns is
represented as a set of tuples. Each tuple constitutes a range: a
block address that specifies the start of the range, the number of
blocks in the range, and the template identifier for the blocks in
the range. Because owned sets can be large, XN allows libFSes
to partition metadata blocks into disjoint pieces such that each set
returned is (typically) a single tuple.

For example, say a libFS wants to allocate a disk block b by
placing a pointer to it in a metadata structure, m. The libFS will
call XN, passing itm, b, and the proposed modification tom (spec-
ified as a list of bytes to write into m). To enforce protection,
XN needs to know that the libFS’s proposed modification actually
does what it says it does—that is, allocates b in m. Thus, XN runs
owns-udfT (m); makes the proposed modification on m0, a copy of
m; and runs owns-udfT (m0

). It then verifies that the new result is
equal the old result plus b.

The acl-uf function implements template-specific access control
and semantics; its input is a piece of metadata, a proposed modifi-
cation to that metadata, and set of credentials (e.g., capabilities). Its
output is a Boolean value approving or disapproving of the mod-
ification. XN runs the proper acl-uf function before any metadata
modification. acl-ufs can implement access control lists, as well
as providing certain other guarantees; for example, an acl-uf could
ensure that inode modification times are kept current by rejecting
any metadata changes that do not update them.

The size-uf function simply returns the size of a data structure
in bytes.

4.2 XN: Problem and history

The most difficult requirement for XN is efficiently determining the
access rights of a given principal to a given disk block. We discuss
the successive approaches that we have pursued.

Disk-block-level multiplexing. One approach is to associate
with each block or extent a capability (or access control list) that
guards it. Unfortunately, if the capability is spatially separated from
the disk block (e.g., stored separately in a table), accessing a block
can require two disk accesses (one to fetch the capability and one
to fetch the block). While caching can mitigate this problem to a
degree, we are nervous about its overhead on disk-intensive work-
loads. An alternative approach is to co-locate capabilities with disk
blocks by placing them immediately before a disk block’s data [26].
Unfortunately, on common hardware, reserving space for a capa-
bility would prevent blocks from being multiples of the page size,
adding overhead and complexity to disk operations.

Self-descriptive metadata. Our first serious attempt at efficient
disk multiplexing provided a means for each instance of metadata
to describe itself. For example, a disk block would start with some
number of bytes of application-specific data and then say “the next
ten integers are disk block pointers.” The complexity of space-
efficient self-description caused us to limit what metadata could be
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described. We discovered that this approach both caused unaccept-
able amounts of space overhead and required excessive effort to
modify existing file system code, because it was difficult to shoe-
horn existing file system data structures into a universal format.

Template-based description. Self-description and its problems
were eliminated by the insight that each file system is built from
only a handful of different on-disk data structures, each of which
can be considered a type. Since the number of types is small, it
is feasible to describe each type only once per file system—rather
than once per instance of a type—using a template.

Originally, templates were written in a declarative description
language (similar to that used in self-descriptive metadata) rather
than UDFs. This system was simple and better than self-descriptive
metadata, but still exhibited what we have come to appreciate as
an indication that applications do not have enough control: the
system made too many tradeoffs. We had to make a myriad of
decisions about which base types were available and how they were
represented (how large disk block pointers could be, how the type
layout could change, how extents were specified). Given the variety
of on-disk data structures described in the file system literature, it
seems unlikely that any fixed set of components will ever be enough
to describe all useful metadata.

Our current solution uses templates, but trades the declarative
description language for a more expressive, interpreted language—
UDFs. This lets libFSes track their own access rights without XN
understanding how they do so; XN merely verifies that libFSes track
block ownership correctly.

4.3 XN: Design and implementation

We first describe the requirements for XN and then present the
design.

4.3.1 Requirements and approach

In our experience so far, the following requirements have been
sufficient to reconcile application control with protected sharing.

1. To prevent unauthorized access, every operation on disk data
must be guarded. For speed, XN uses secure bindings [11]
to move access checks to bind time rather than checking at
every access. For example, the permission to read a cached
disk block is checked when the page is inserted into the page
table of the libFS’s environment, rather than on every access.

2. XN must be able to determine unambiguously what access
rights a principal has to a given disk block. For speed, it uses
the UDF mechanism to protect disk blocks using the libFS’s
own metadata rather than guarding each block individually.

3. XN must guarantee that disk updates are ordered such that
a crash will not incorrectly grant a libFS access to data it
either has freed or has not allocated. This requirement means
that metadata that is persistent across crashes cannot be writ-
ten when it contains pointers to uninitialized metadata, and
that reallocation of a freed block must be delayed until all
persistent pointers to it have been removed.

While isolation allows separate libFSes to coexist safely, pro-
tected sharing of file system state by mutually distrustful libFSes
requires three additional features:

1. Coherent caching of disk blocks. Distributed, per-application
disk block caches create a consistency problem: if two appli-
cations obliviously cache the same disk block in two differ-
ent physical pages, then modifications will not be shared. XN
solves this problem with an in-kernel, system-wide, protected

cache registry that maps cached disk blocks to the physical
pages holding them.

2. Atomic metadata updates. Many file system updates have
multiple steps. To ensure that shared state always ends up
in a consistent and correct state, libFSes can lock cache reg-
istry entries. (Future work will explore optimistic concur-
rency control based on versioning.)

3. Well-formed updates. File abstractions above the XN inter-
face may require that metadata modifications satisfy invari-
ants (e.g., that link counts in inodes match the number of as-
sociated directory entries). UDFs allow XN to guarantee such
invariants in a file-system-specific manner, allowing mutually
distrustful applications to safely share metadata.

XN controls only what is necessary to enforce these protection
rules. All other abilities—I/O initiation, disk block layout and allo-
cation policies, recovery semantics, and consistency guarantees—
are left to untrusted libFSes.

4.3.2 Ordered disk writes

Another difficulty XN must face is guaranteeing the rules Ganger
and Patt [16] give for achieving strict file system integrity across
crashes: First, never reuse an on-disk resource before nullifying all
previous pointers to it. Second, never create persistent pointers to
structures before they are initialized. Third, when moving an on-
disk resource, never reset the old pointer in persistent storage before
the new one has been set.

The first two rules are required for global system integrity—and
thus must be enforced by XN—while a file system violating the
third rule will only affect itself.

The rules are simple but difficult to enforce efficiently: a naive
implementation will incur frequent costly synchronous disk writes.
XN allows libFSes to address this by enforcing the rules without
legislating how to follow them. In particular, libFSes can choose
any operation order which satisfies the constraints.

The first rule is implemented by deferring a block’s deallocation
until all on-disk pointers to that block have been deleted; a reference
count performed at crash recovery time helps libFSes implement the
third rule.

The second rule is the hardest of the three. To implement it, XN
keeps track of tainted blocks. Any block is considered tainted if it
points either to an uninitialized block or to a tainted block. LibFSes
must not be allowed to write a tainted block to disk. However, two
exceptions allow XN to enforce the general rule more efficiently:

First, XN allows entire file systems to be marked “temporary”
(i.e., not persistent across reboots). Since these file systems are not
persistent, they are not required to adhere to any of the integrity
rules. This technique allows memory-based file systems to be im-
plemented with no loss of efficiency.

The second exception is based on the observation that unattached
subtrees—trees whose root is not reachable from any persistent
root—will not be preserved across reboots and thus, like tempo-
rary trees, are free of any ordering constraints. Thus, XN does not
track tainted blocks in an unreachable tree until it is connected to a
persistent root.

4.3.3 The buffer cache registry

Finally, we discuss the XN buffer cache registry, which allows pro-
tected sharing of disk blocks among libFSes. The registry tracks the
mapping of cached disk blocks and their metadata to physical pages
(and vice versa). Unlike traditional buffer caches, it only records
the mapping, not the disk blocks themselves. The disk blocks are
stored in application-managed physical-memory pages. The registry
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tracks both the mapping and its state (dirty, out of core, uninitialized,
locked). To allow libFSes to see which disk blocks are cached, the
buffer cache registry is mapped read-only into application space.

Access control is performed when a libFS attempts to map a
physical page containing a disk block into its address space, rather
than when that block is requested from disk. That is, registry entries
can be inserted without requiring that the object they describe be
in memory. Blocks can also be installed in the registry before their
template or parent is known. As a result, libFSes have significant
freedom to prefetch.

Registry entries are installed in two ways. First, an application
that has write access to a block can directly install a mapping to it
into the registry. Second, applications that do not have write access
to a block can indirectly install an entry for it by performing a “read
and insert,” which tells the kernel to read a disk block, associate it
with an application-provided physical page, set the protection of that
page page appropriately, and insert this mapping into the registry.
This latter mechanism is used to prevent applications that do not
have permission to write a block from modifying it by installing a
bogus in-core copy.

XN does not replace physical pages from the registry (except for
those freed by applications), allowing applications to determine the
most appropriate caching policy. Because applications also manage
virtual memory paging, the partitioning of disk cache and virtual
memory backing store is under application control. To simplify
the application’s task and because it is inexpensive to provide, XN
maintains an LRU list of unused but valid buffers. By default, when
LibOSes need pages and none are free, they recycle the oldest buffer
on this LRU list.

XN allows any process to write “unowned” dirty blocks to disk
(i.e., blocks not associated with a running process), even if that
process does not have write permission for the dirty blocks. This
allows the construction of daemons that asynchronously write dirty
blocks. LibFSes do not have to trust daemons with write access
to their files, only to flush the blocks. This ability has three bene-
fits. First, the contents of the registry can be safely retained across
process invocations rather than having to be brought in and paged
out on creation and exit. Second, this design simplifies the imple-
mentations of libFSes, since a libFS can rely on a daemon of its
choice to flush dirty blocks even in difficult situations (e.g., if the
application containing the libFS is swapped out). Third, this design
allows different write-back policies.

4.4 XN usage

To illustrate how XN is used, we sketch how a libFS can implement
common file system operations. These two setup operations are
used to install a libFS:

Type creation. The libFS describes its types by storing tem-
plates, described above in Section 4.1, into a type catalogue. Each
template is identified by a unique string (e.g., “FFS Inode”). Once
installed, types are persistent across reboots.

LibFS persistence. To ensure that libFS data is persistent across
reboots, a libFS can register the root of its tree in XN’s root cat-
alogue. A root entry consists of a disk extent and corresponding
template type, identified by a unique string (e.g., “mylibFS”).

After a crash, XN uses these roots to garbage-collect the disk
by reconstructing the free map. It does so by logically traversing
all roots and all blocks reachable from them: reachable blocks are
allocated, non-reachable blocks are not. If rebuilding the free map
after a crash needs to be fast, this step can be eliminated by ordering
writes to the free map.

After initialization, the new libFS can use XN. We describe a
simplified version of the most common operations.

Startup. To start using XN, a libFS loads its root(s) and any
types it needs from the root catalogue into the buffer cache registry.

Usually both will already be cached.
Read. Reading a block from disk is a two-stage process, where

the stages can be combined or separated. First, the libFS creates
entries in the registry by passing block addresses for the requested
disk blocks and the metadata blocks controlling them (their par-
ents). The parents must already exist in the registry—libFSes are
responsible for loading them. XN uses owns-udf to determine if
the requested blocks are controlled by the supplied metadata blocks
and, if so, installs registry entries.

In the second stage, the libFS initiates a read request, optionally
supplying pages to place the data in. Access control through acl-uf
is performed at the parent (e.g., if the data loaded is a bare disk
block), at the child (e.g., if the data is an inode), or both.

A libFS can load any block in its tree by traversing from its root
entry, or optionally by starting from any intermediate node cached
in the registry. Note that XN specifically disallows metadata blocks
from being mapped read/write.

To speculatively read a block before its parent is known, a libFS
can issue a raw read command. If the block is not in the registry, it
will be marked as “unknown type” and a disk request initiated. The
block cannot be used until after it is bound to a parent by the first
stage of the read process, which will determine its type and allow
access control to be performed.

Allocate. A libFS selects blocks to allocate by reading XN’s
map of free blocks, allowing libFSes to control file layout and
grouping. Free blocks are allocated to a given metadata node by
calling XN with the metadata node, the blocks to allocate, and the
proposed modification to the metadata node. XN checks that the
requested blocks are free, runs the appropriate acl-uf to see if the
libFS has permission to allocate, and runs owns-udf, as described in
Section 4.1, to see that the correct block is being allocated. If these
checks all succeed, the metadata is changed, the allocated blocks
are removed from the free list, and any allocated metadata blocks
are marked tainted (see Section 4.3.2).

Write. A libFS writes dirty blocks to disk by passing the blocks
to write to XN. If the blocks are not in memory, or they have been
pinned in memory by some other application, the write is prevented.
The write also fails if any of the blocks are tainted and reachable
from a persistent root. Otherwise, the write succeeds. If the block
was previously tainted and now is not (either by eliminating pointers
to uninitialized metadata or by becoming initialized itself), XN
modifies its state and removes it from the tainted list.

Since applications control what is fetched and what is paged out
when (and in what order), they can control many disk management
policies and can enforce strong stability guarantees.

Deallocate. XN uses UDFs to check deallocate operations anal-
ogously to allocate operations. If there are no on-disk pointers to a
deallocated disk block, XN places it on the free list. Otherwise, XN
enqueues the block on a “will free” list until the block’s reference
count is zero. Reference counts are decremented when a parent that
had an on-disk pointer to the block deletes that pointer via a write.

4.5 C-FFS: a library file system

This subsection briefly describes C-FFS (co-locating fast file sys-
tem [15])—a UNIX-like library file system we built—with special
reference to additional protection guarantees it provides.

XN provides the basic protection guarantees needed for file
system integrity, but real-world file systems often require other, file-
system-specific invariants. For instance, UNIX file systems must
ensure the uniqueness of file names within a directory. This type of
guarantee can be provided in any number of ways: in the kernel, in a
server, or, in some cases, by simple defensive programming. C-FFS
currently downloads methods into the kernel to check its invariants.
We are currently developing a system similar to UDFs that can be
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used to enforce type-specific invariants in an efficient, extensible
way.

Our experience with C-FFS shows that, even with the strongest
desired guarantees, a protected interface can still provide significant
flexibility to unprivileged software, and that the exokernel approach
can deal as readily with high-level protection requirements as it can
with those closer to hardware.

C-FFS makes four main additions to XN’s protection mecha-
nisms:

1. Access control: it maps the UNIX representation and seman-
tics of access control (uids and gids, etc.) to those of exokernel
capabilities.

2. Well-formed updates: C-FFS guarantees UNIX-specific file
semantics: for example, that directories contain legal, aligned
file names.

3. Atomicity: C-FFS performs locking to ensure that its data is
always recoverable and disk writes only occur when metadata
is internally consistent.

4. Implicit updates: C-FFS ensures that certain state transitions
are implicit on certain actions. Some examples are that mod-
ification times are updated when file data are changed, and
that renaming or deleting a file updates the name cache.

It is not difficult to implement UNIX protection without sig-
nificantly degrading application power. C-FFS protection is im-
plemented mainly by a small number of if-statements rather than
by procedures that limit flexibility. The most intricate operation—
ensuring that files in a directory have unique names—is less than
100 lines of code that scans through a linked list of cached directory
blocks to ensure name uniqueness.

4.6 Future work

Stable storage is the most challenging resource we have multi-
plexed. Future work will focus on two areas. First, we plan to im-
plement a range of file systems (log-structured file systems, RAID,
and memory-based file systems), thus testing if the XN interface
is powerful enough to support concurrent use by radically different
file systems. Second we will investigate using lightweight protected
methods like UDFs to implement the simple protection checks re-
quired by higher-level abstractions.

5 Overview of Xok/ExOS

For the experiments in this paper, we use Xok/ExOS. This section
describes both Xok and ExOS.

5.1 Xok
Xok safely multiplexes the physical resources on Intel x86-based
computers. Xok performs this task in a manner similar to the Aegis
exokernel, which runs on MIPS-based DECstations [11]. The CPU
is multiplexed by dividing time into round-robin-scheduled slices
with explicit notification of the beginning and the end of a time
slice. Environments provide the hardware-specific state needed to
run a process (e.g., an exception stack) and to respond to any event
occurring during process execution (e.g., interrupts and exceptions).
The network is multiplexed with dynamic packet filters [10]. This
subsection briefly describes the differences between Aegis and Xok.

Physical memory. Unlike the MIPS architecture, the x86 archi-
tecture defines the page-table structure. Since x86 TLB refills are
handled in hardware, this structure cannot be overridden by appli-
cations. Additionally, since the hardware does not verify that the

physical page of a translation can be mapped by a process, applica-
tions are prevented from directly modifying the page table and must
instead use system calls. Although these restrictions make Xok less
extensible than Aegis, they simplify the implementation of libOSes
(see Section 9) with only a small reduction in application flexibility.

Like Aegis, Xok allows efficient and powerful virtual memory
abstractions to be built at the application level. It does so by exposing
the capabilities of the hardware (e.g., all MMU protection bits)
and exposing many kernel data structures (e.g., free lists, inverse
page mappings). Xok’s low-level interface means that paging is
handled by applications. As such, it can be done from disk, across
the network, or by data regeneration. Additionally, applications
can readily perform per-page transformations such as compression,
verification of contents using digital signatures (to allow untrusted
nodes in a network to cache pages), or encryption.

Wakeup predicates. Applications often want to sleep until a
condition is true. Unfortunately, it may be difficult for an applica-
tion to express this condition to the kernel. This problem is more
prevalent on exokernels because the bulk of OS functionality resides
in the application.

To solve this problem, Xok provides applications with the ability
to inject wakeup predicates into the kernel. Wakeup predicates are
boolean expressions used by applications to sleep until the state of
the system satisfies some condition; they are evaluated by the kernel
when an environment is about to be scheduled. The application is
not scheduled if the predicate does not hold.

Predicate evaluation is efficient. Like dynamic packet filters,
Xok compiles predicates on-the-fly to executable code. The signif-
icant overhead of an address space context switch is eliminated by
evaluating the predicates in the exokernel and pre-translating all
predicate virtual addresses to their associated physical addresses.
When a virtual page referenced in a predicate is unmapped, the phys-
ical page is not marked as free until a new predicate is downloaded
or until the application exits. Furthermore, the implementation of
wakeup predicates is simple (fewer than 200 lines of commented
code) because careful language design (no loops and easy to under-
stand operations) allows predicates to be easily controlled.

Predicates are simple but powerful. Coupled with Xok’s ex-
posure of data structures, they have provided us with a robust
wakeup facility—none of the new uses of wakeup predicates re-
quired changes to Xok. For example, to wait for a disk block to
be paged in, a wakeup predicate can bind to the block’s state and
wake up when it changes from “in transit” to “resident.” To bound
the amount of time a predicate sleeps, it can compare against the
system clock. The composition of multiple predicates allows atomic
checking of disjoint data structures.

Access control Unlike Aegis, Xok performs access control
through hierarchically-named capabilities [31]; despite the name,
these capabilities more closely resemble a generalized form of
UNIX user and group ID than traditional capabilities [9]. All Xok
calls require explicit credentials. We believe that the combination
of an exokernel interface, hierarchically-named capabilities, and
explicit credentials will simplify the implementation of secure ap-
plications, as we hope to demonstrate in future work.

5.2 ExOS 1.0
ExOS is a libOS that supports most of the abstractions found in
4.4BSD. It runs many unmodified UNIX applications, including all
of the applications that are needed to build the complete system
(kernel, ExOS, and applications) on itself. It also runs most shells,
file utilities (wc, grep, ls, vi, etc.), and many networking applica-
tions (telnetd, ftp, etc.). The most salient missing functions are full
paging, process swapping, process groups, and a windowing sys-
tem. There is no fundamental reason why these are not supported;
we simply have not yet had the time to implement or port them. On
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Aegis, for instance, ExOS supported full paging to disk and over
the network.

The primary goals of ExOS are simplicity and flexibility. To al-
low applications to override any implementation feature, we made
the system entirely library based, rather than place objects such as
process tables in non-customizable servers. As a result, customiza-
tion of the resulting system is limited only by an application’s un-
derstanding of the system interfaces and by the protection enforced
by shared abstractions—any ExOS functionality can be replaced by
application-specific code.

The two primary caveats of the current implementation are that
the system is research, not production quality and that it uses shared
global state for some abstractions. These limitations are not funda-
mental and we do not expect removing either caveat to have a
significant impact on our results. To compensate for the effects of
shared state on performance, measurements in Sections 6 and 8
include the cost of inserting system calls before all writes to shared
state. This represents the overhead of invoking the kernel to check
writes to shared state.

5.2.1 Implementing UNIX abstractions on Xok
To implement UNIX abstractions in a library, we partitioned most
of the UNIX kernel state and made it private to each process. The
remainder is shared. Most critical shared state (inode table, file sys-
tem metadata, page tables, buffer cache, process table, and pipes), is
protected using Xok’s protections mechanisms. However, for some
shared state (the process map, file descriptor table, sockets, TTYs,
mount table, and system V shared memory table), ExOS uses shared
memory. Using software regions, we plan to make this shared state
fully protected in the near future. A limited degree of fault isola-
tion is provided for these abstractions by mapping shared data at
addresses far from the application text and data.

Processes. The process map maps UNIX process identifiers to
Xok environment numbers using a shared table. The process table
records the process identifiers of each process, that of its parent, the
arguments with which the process was called, its run status, and the
identity of its children. The table is partitioned across application-
reserved memory of Xok’s environment structure, which is mapped
readable for all processes and writeable for only the environment’s
owning process. ExOS uses Xok’s IPC to safely update parent and
child process state. The UNIX ps (process status) program is im-
plemented by reading all the entries of the process table.

UNIX provides the fork system call to duplicate the current
process and exec to overlay it with another. Exec is implemented by
creating a new address space for the new process, loading on demand
the disk image of the process into the new address space, and then
discarding the address space that called exec. Implementing fork in
a library is peculiar since it requires that a process create a replica
of its address space and state while it is executing. To make fork
efficient, ExOS uses copy-on-write to lazily create separate copies
of the parent’s address space. ExOS scans through its page tables,
which are exposed by Xok, marking all pages as copy-on-write
except those data segment and stack pages that the fork call itself is
using. These pages must be duplicated so as not to generate copy-
on-write faults while running the fork and page fault handling code.
Groups of page table entries are updated at once by batching system
calls to amortize the system call overhead over many updates.

Interprocess communication. UNIX defines a variety of in-
terprocess communication primitives: signals (software interrupts
that can be sent between processes or to a process itself), pipes
(producer-consumer untyped message queues), and sockets (differ-
ing from pipes in that they can be established between non-related
processes, potentially executing on different machines).

Signals are layered on top of Xok IPC. Pipes are implemented
using Xok’s software regions, coupled with a “directed yield” to the
other party when it is required to do work (i.e., if the queue is full or

empty). Sockets communicating on the same machine are currently
implemented using a shared buffer.

Inter-machine sockets are implemented through user-level net-
work libraries for UDP and TCP. The network libraries are imple-
mented using Xok’s timers, upcalls, and packet rings, which allow
protected buffering of received network packet,

File descriptors. File descriptors are small integers used to ac-
cess many UNIX resources (e.g., files, sockets, pipes). On ExOS
they name entries in a global file descriptor table, which is cur-
rently stored in shared memory. As in the UNIX kernel itself, ExOS
accesses each table element in an object-oriented manner: each
resource is associated with a table of pointers to functions imple-
menting each operation (read, write, etc.). However, unlike UNIX,
ExOS allows applications to install their own methods.

Files. Local files are accessed through C-FFS, which uses XN to
protect file metadata; remote files are accessed through the Network
File System protocol (NFS) [38]. Both file systems are library based.
ExOS uses XN’s buffer cache registry to safely share both C-FFS
and NFS disk blocks.

UNIX allows different file systems to be attached to its hierarchi-
cal name space. ExOS duplicates this functionality by maintaining
a currently unprotected shared mount table that maps directories
from one file system to another.

5.2.2 Shared libraries
Since ExOS is implemented as a library, shared libraries are cru-
cial. Without shared libraries, every application would contain its
own copy of ExOS, wasting memory and making process creation
expensive. We employ a simple but primitive scheme for shared
libraries. ExOS is linked as a stand-alone executable with its base
address starting at a reserved section of the application’s address
space. Its exported symbols are then extracted and stored in an as-
sembly file. To resolve calls to library routines, the application links
against this assembly file. During process creation the application
is loaded and ExOS maps the library at its indicated address.

This organization separates the file that the libOS resides in from
applications, allowing multiple applications to share the same on-
disk copy and, more importantly, any cached disk blocks from this
file. Code sharing reduces the size of ExOS executables to roughly
that of normal UNIX applications. Unlike traditional dynamic link-
ing, procedure calls are no more expensive than for normal code
since they do not require the use of a relocation table.

6 Application Performance on Xok

This section shows that unmodified UNIX applications run as fast
on Xok/ExOS as on conventional centralized operating systems. In
fact, because of C-FFS, some applications run considerably faster
on Xok/ExOS. We compare Xok/ExOS to both FreeBSD 2.2.2 and
OpenBSD 2.1 on the same hardware. Xok uses device drivers that
are derived from those of OpenBSD. ExOS also shares a large
source code base with OpenBSD, including most applications and
most of libc. Compared to OpenBSD and FreeBSD, ExOS has not
had much time to mature; we built the system in less than two years
and moved to the x86 platform only a year ago.

All experiments are performed on 200-MHz Intel Pentium Pro
processors with a 256-KByte on-chip L2 cache and 64-MByte of
main memory. The disk system consists of an NCR 815 SCSI con-
troller connecting a fast SCSI chain with one or more Quantum
Atlas XP32150 disk drives to the PCI bus (vs440fx PCI chip set).
Reported times are the minimum time of ten trials (the standard
deviations of the total run times are less than three percent).

The measurements establish two results. First, the base per-
formance of unaltered UNIX applications linked against ExOS is
comparable to OpenBSD and FreeBSD. Untrusted libOSes on an
exokernel can support unchanged UNIX applications with the same
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performance as centralized monolithic UNIX operating systems.
Second, because of ExOS’s high-performance file system, some
unaltered UNIX applications perform better on ExOS than on Free-
BSD and OpenBSD. Applications do not need to be re-written or
even modified in order to take advantage of an exokernel.

It is important to note that a sufficiently motivated kernel pro-
grammer can implement any optimization that is implemented in
an extensible system. In fact, a member of our research group,
Costa Sapuntzakis, has implemented a version of C-FFS within
OpenBSD. Extensible systems (and we believe exokernels in par-
ticular) make these optimizations significantly easier to implement
than centralized systems do. For example, porting C-FFS to Open-
BSD took more effort than designing C-FFS and implementing it
as a library file system. The experiments below demonstrate that
by using unprivileged application-level resource management, any
skilled programmer can implement useful OS optimizations. The
extra layer of protection required to make this application-level
management safe costs little.

6.1 Base system performance
We test ExOS’s base performance by running the I/O-intensive
benchmarks from Table 1 over ExOS’s library implementation of
C-FFS on top of XN and comparing it to OpenBSD with a C-FFS
file system. The workload in the experiments represents unmodi-
fied UNIX programs involved with installing a software package:
copying a compressed archive file, uncompressing it, unpacking it
(which results in a source tree), copying the resulting tree, com-
paring the two trees, compiling the source tree, deleting binaries,
archiving the source tree, compressing the archive file, and deleting
the source tree (see Table 1).

Figure 2 shows the performance of these applications over
Xok/ExOS, OpenBSD/C-FFS, OpenBSD, and FreeBSD. To es-
tablish base system performance, we compare Xok/ExOS with
OpenBSD/C-FSS, since they both use a C-FFS file system. The total
running time for Xok/ExOS is 41 seconds and for OpenBSD/C-FFS
is 51 seconds. Since ExOS and OpenBSD/C-FFS use the same type
of file system, one would expect that ExOS and OpenBSD perform
equally well. As can be seen in Figure 2, Xok/ExOS performance
is indeed comparable to OpenBSD/C-FFS on eight of the 11 ap-
plications. On three applications (pax, cp, diff), Xok/ExOS runs
considerably faster (though we do not yet have a good explanation
for this).

From these measurements we conclude that, even though ExOS
implements the bulk of the operating system at the application level,
common software development operations on Xok/ExOS perform
comparably to OpenBSD/C-FFS. They demonstrate that—at least
for this common domain of applications—an exokernel’s flexibility
can be provided for free: even without aggressive optimizations
ExOS’s performance is comparable to that of mature monolithic
systems. The cost of low-level multiplexing is negligible.

6.2 Invisible optimization using C-FFS
These comparisons concentrate on I/O intensive operations that
exploit the C-FFS library file system [15]. We again use the I/O-
intensive benchmarks described in Table 1, but now compare Xok/C-
FFS with OpenBSD and FreeBSD. As Figure 2 shows, unaltered
UNIX applications can run significantly faster on top of Xok/ExOS.
Xok/ExOS completes all benchmarks in 41 seconds, 19 seconds
faster than FreeBSD and OpenBSD. On eight of the eleven bench-
marks Xok/ExOS performs better than Free/OpenBSD (in one case
by over a factor of four). ExOS’s performance improvements are
due to its C-FFS file system.

We also ran the Modified Andrew Benchmark (MAB) [33].
On this benchmark, Xok/ExOS takes 11.5 seconds, OpenBSD/C-
FFS takes 12.5 seconds, OpenBSD takes 14.2 seconds, and Free-

Benchmark Description (application)
Copy small file copy the compressed archived source tree (cp)
Uncompress uncompress the archive (gunzip)
Copy large file copy the uncompressed archive (cp)
Unpack file unpack archive (pax)
Copy large tree recursively copy the created directories (cp).
Diff large tree compute the difference between the trees (diff)
Compile compile source code (gcc)
Delete files delete binary files (rm)
Pack tree archive the tree (pax)
Compress compress the archive tree (gzip)
Delete delete the created source tree (rm)

Table 1: The I/O-intensive workload installs a large application (the
lcc compiler). The size of the compressed archive file for lcc is 1.1
MByte.
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Figure 2: Performance of unmodified UNIX applications.
Xok/ExOS and OpenBSD/C-FFS use a C-FFS file system while
Free/OpenBSD use their native FFS file systems. Times are in sec-
onds.

BSD takes 11.5 seconds. The difference in performance on MAB is
less profound than on the I/O-intensive benchmark, because MAB
stresses fork, an expensive function in Xok/ExOS. ExOS’s fork per-
formance suffers because Xok does not yet allow environments to
share page tables. Fork takes six milliseconds on ExOS, compared
to less than one millisecond on OpenBSD.

6.3 The cost of protection
In this section, we investigate the cost of protection on Xok/ExOS.
As discussed in the previous section, we have not yet completed
the protected implementation of all data structures. ExOS stores
some tables in writeable global shared memory, including the file
descriptor table. In order for our measurements to estimate the
performance of a fully protected ExOS, we inserted three system
calls before every write to these shared tables. All measurements
reported in Section 6 include these extra calls.

To measure the costs of all protection we ran the benchmarks
presented in Figure 2 without XN or any of the extra system calls.
This reduces the overall number of Xok system calls from 300,000
to 81,000, but only changes the total running time from 41.1 seconds
to 39.7 seconds. Real workloads are dominated by costs other than
system call overhead.

To investigate the cost of protection in more detail, we measure
the cost of the protection mechanisms described in Section 3. We do
so by comparing two implementations of pipes (see Table 2). The
first implementation places all data in shared memory and performs
no sanity checking. The second implementation uses software re-
gions to protect pipe data and installs a wakeup predicate on every
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Benchmark Shared memory Protection OpenBSD
Latency 1-byte 13 30 34
Latency 8-Kbyte 150 148 160

Table 2: The cost of a local-trust implementation of pipes (times in
microseconds).

read (something unnecessary even with mutual distrust). The results
show that even with gratuitous use of Xok’s protection mechanisms,
user-level pipes can still outperform OpenBSD.

7 Exploiting Extensibility in Applications

This section demonstrates some of the interesting possibilities in
functionality and performance enabled by application-level resource
management. We report on a binary emulator, a “zero-touch” file-
copy program, and the Cheetah web server. Because XN was de-
veloped recently, the applications in this section were not measured
with XN.

7.1 Fast, simple binary emulation
Xok provides facilities to efficiently reroute specific INT instruc-
tions. We have used this ability to build a binary emulator for Open-
BSD applications by capturing the system calls made by emulated
OpenBSD programs. This binary emulator is useful for OpenBSD
programs for which we do not have source code. Although the
emulator is only partially completed (it supports 90 of the approxi-
mately 155 OpenBSD system calls), initial results are promising: it
has been able to execute large programs such as Mosaic.

The main interesting feature of the emulator is that it runs in the
same address space as the emulated program, and consequently does
not need any privilege. Measurements show that most programs on
the emulator run only a few percent slower than the same programs
running directly under Xok/ExOS.

A counter-intuitive result is that, because the emulator runs in
the same address space as ExOS, it is possible to run emulated
programs faster than on their native OS. For example, the trivial
“get process id” system call takes 270 cycles on OpenBSD and 100
cycles on the emulator running on Xok/ExOS (on a 120-MHz Intel
Pentium). This difference comes from the fact that the emulator
replaces OpenBSD system calls with procedure calls into ExOS.
ExOS can omit many expensive checks that UNIX must perform
in order to guard against application errors (on an exokernel, if
an application passes the wrong arguments to a libOS, only the
application will be affected).

7.2 XCP: a “zero-touch” file copying program
XCP is an efficient file copy program. It exploits the low-level disk
interface by removing artificial ordering constraints, by improv-
ing disk scheduling through large schedules, by eliminating data
touching by the CPU, and by performing all disk operations asyn-
chronously.

Given a list of files, XCP works as follows. First, it enumerates
and sorts the disk blocks of all files and issues large, asynchronous
disk reads using this schedule. (If multiple instances of XCP run
concurrently, the disk driver will merge the schedules.) Second, it
creates new files of the correct size, overlapping inode and disk
block allocation with the disk reads. Finally, as the disk reads com-
plete, it constructs large writes to the new disk blocks using the
buffer cache entries. This strategy eliminates all copies; the file is
DMAed into and out of the buffer cache by the disk controller—the
CPU never touches the data.

XCP is a factor of three faster than the copy program (CP) on
Xok/ExOS that uses UNIX interfaces, irrespective of whether all

files are in core (because XCP does not touch the data) or on disk
(because XCP issues disk schedules with a minimum number of
seeks and the largest contiguous ranges of disk blocks).

The fact that the file system is an application library allows us
both to have integration when appropriate and to craft new abstrac-
tions as needed. This latter ability is especially profitable for the disk
both because of the high cost of disk operations and because of the
demonstrated reluctance of operating systems vendors to provide
useful, simple improvements to their interfaces (e.g., prefetching,
asynchronous reads and writes, fine-grained disk restructuring and
“sync” operations).

7.3 The Cheetah HTTP/1.0 Server
The exokernel architecture is well suited to building fast servers
(e.g., for NFS servers or web servers). Server performance is cru-
cial to client/server applications [23], and the I/O-centric nature of
servers makes operating system-based optimizations profitable.

We have developed an extensible I/O library (XIO) for fast
servers and a sample application that uses it, the Cheetah HTTP
server. This library is designed to allow application writers to exploit
domain-specific knowledge and to simplify the construction of high-
performance servers by removing the need to “trick” the operating
system into doing what the application requires (e.g., Harvest [7]
stores cached pages in multiple directories to achieve fast name
lookup).

An HTTP server’s task is simple: given a client request, it finds
the appropriate document and sends it. The Cheetah Web server
performs the following set of optimizations as well as others not
listed here.

Merged File Cache and Retransmission Pool. Cheetah avoids
all in-memory data touching (by the CPU) and the need for a distinct
TCP retransmission pool by transmitting file data directly from the
file cache using precomputed file checksums (which are stored with
each file). Data are transmitted (and retransmitted, if necessary) to
the client directly from the file cache without CPU copy operations.
(Pai et al. have also used this technique [34].)

Knowledge-based Packet Merging. Cheetah exploits knowl-
edge of its per-request state transitions to reduce the number of I/O
actions it initiates. For example, it avoids sending redundant control
packets by delaying ACKs on client HTTP requests, since it knows
it will be able to piggy-back them on the response. This optimiza-
tion is particularly valuable for small document sizes, where the
reduction represents a substantial fraction (e.g., 20%) of the total
number of packets.

HTML-based File Grouping. Cheetah co-locates files included
in an HTML document by allocating them in disk blocks adjacent
to that file when possible. When the file cache does not capture
the majority of client requests, this extension can improve HTTP
throughput by up to a factor of two.

Figure 3 shows HTTP request throughput as a function of the re-
quested document size for five servers: the NCSA 1.4.2 server [32]
running on OpenBSD 2.0, the Harvest cache [7] running on Open-
BSD 2.0, the base socket-based server running on OpenBSD 2.0
(i.e., our HTTP server without any optimizations), the base socket-
based server running on the Xok exokernel system (i.e., our HTTP
server without any optimizations with vanilla socket and file de-
scriptor implementations layered over XIO), and the Cheetah server
running on the Xok exokernel (i.e., our HTTP server with all opti-
mizations enabled).

Figure 3 provides several important pieces of information. First,
our base HTTP server performs roughly as well as the Harvest cache,
which has been shown to outperform many other HTTP server im-
plementations on general-purpose operating systems. Both outper-
form the NCSA server. This gives us a reasonable starting point
for evaluating extensions that improve performance. Second, the
default socket and file system implementations built on top of XIO
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Figure 3: HTTP document throughput as a function of the doc-
ument size for several HTTP/1.0 servers. NCSA/BSD represents
the NCSA/1.4.2 server running on OpenBSD. Harvest/BSD repre-
sents the Harvest proxy cache running on OpenBSD. Socket/BSD
represents our HTTP server using TCP sockets on OpenBSD.
Socket/Xok represents our HTTP server using the TCP socket
interface built on our extensible TCP/IP implementation on the
Xok exokernel. Cheetah/Xok represents the Cheetah HTTP server,
which exploits the TCP and file system implementations for speed.

perform significantly better than the OpenBSD implementations of
the same interfaces (by 80–100%). The improvement comes mainly
from simple (though generally valuable) extensions, such as packet
merging, application-level caching of pointers to file cache blocks,
and protocol control block reuse.

Third, and most importantly, Cheetah significantly outperforms
the servers that use traditional interfaces. By exploiting Xok’s exten-
sibility, Cheetah gains a four times performance improvement for
small documents (1 KByte and smaller), making it eight times faster
than the best performance we could achieve on OpenBSD. Further-
more, the large document performance for Cheetah is limited by
the available network bandwidth (three 100Mbit/s Ethernets) rather
than by the server hardware. While the socket-based implementa-
tion is limited to only 16.5 MByte/s with 100% CPU utilization,
Cheetah delivers over 29.3 MByte/s with the CPU idle over 30% of
the time. The extensibility of ExOS’s default unprivileged TCP/IP
and file system implementations made it possible to achieve these
performance improvements incrementally and with low complexity.

The optimizations performed by Cheetah are architecture inde-
pendent. In Aegis, Cheetah obtained similar performance improve-
ments over Ultrix web servers [24].

8 Global Performance

Xok/ExOS’s decentralization of resource management allows the
performance of individual applications to be improved, but Xok/
ExOS must also guarantee good global performance when running
multiple applications concurrently. The experiments in this section
measure the situation where the exokernel architecture seems po-
tentially weak: under substantial load where selfish applications are
consuming large resources and utilizing I/O devices heavily. The
results indicate that an exokernel can successfully reconcile local
control with global performance.

Global performance has not been extensively studied. We use
the total time to complete a set of concurrent tasks as a measure of
system throughput, and the minimum and the maximum latency of
individual applications as a measure of interactive performance. For
simplicity we compare Xok/ExOS’s performance under high load to
that of FreeBSD; in these experiments, FreeBSD always performs
better than OpenBSD, because of OpenBSD’s small, non-unified
buffer cache. While this methodology does not guarantee that an
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Figure 4: Measured global performance of Xok/ExOS (the first
bar) and FreeBSD (the second bar), using the first application pool.
Times are in seconds and on a log scale. number/number refers to the
the total number of applications run by the script and the maximum
number of jobs run concurrently. Total is the total running time of
each experiment, Max is the longest runtime of any process in a
given run (giving the worst latency). Min is the minimum.

exokernel can compare to any centralized system, it does offer a
useful relative metric.

The space of possible combinations of applications to run is
large. The experiments use randomization to ensure we get a rea-
sonable sample of this space. The inputs are a set of applications to
pick from, the total number to run, and the maximum number that
can be running concurrently. Each experiment maintains the num-
ber of concurrent processes at the specified maximum. The outputs
are the total running time, giving throughput, and the time to run
each application. Poor interactive performance will show up as a
high minimum latency.

The first application pool includes a mix of I/O-intensive and
CPU-intensive programs: pack archive (pax -w), search for a word
in a large file (grep), compute a checksum many times over a small
set of files (cksum), solve a traveling salesman problem (tsp), solve
iteratively a large discrete Laplace equation using successive over-
relaxation (sor), count words (wc), compile (gcc), compress (gzip),
and uncompress (gunzip). For this experiment, we chose applica-
tions on which both Xok/ExOS and FreeBSD run roughly equiva-
lently. Each application runs for at least several seconds and is run
in a separate directory from the others (to avoid cooperative buffer
cache reuse). The pseudo-random number generators are identical
and start with the same seed, thus producing identical schedules.
The applications we chose compete for the CPU, memory, and the
disk.

Figure 4 shows on a log scale the results for five different ex-
periments: seven jobs with a maximum concurrency of one job
through 35 jobs with a maximum concurrency of five jobs. The
results show that an exokernel system can achieve performance
roughly comparable to UNIX, despite being mostly untuned for
global performance.

With a second application pool, we examine global performance
when specialized applications (emulated by applications that bene-
fit from C-FFS’s performance advantages) compete with each other
and non-specialized applications. This pool includes tsp and sor
from above, unpack archive (pax -r) from Section 6, recursive copy
(cp -r) from Section 6, and comparison (diff) of two identical 5 MB
files. The pax and cp applications represent the specialized applica-
tions.

Figure 5 shows on a log scale the results for five experiments:
seven jobs with a maximum concurrency of one job through 35 jobs
with a maximum concurrency of 5 jobs. The results show that global
performance on an exokernel system does not degrade even when
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Figure 5: Measured global performance of Xok/ExOS (the first bar)
and FreeBSD (the second bar), using the second application pool.
Methodology and presentation are as described for Figure 4.

some applications use resources aggressively. In fact, the relative
performance difference between FreeBSD and Xok/ExOS increases
with job concurrency.

The central challenge in an exokernel system is not enforcing
a global system policy but, rather, deriving the information needed
to decide what enforcement involves and doing so in such a way
that application flexibility is minimally curtailed. Since an exo-
kernel controls resource allocation and revocation, it has the power
to enforce global policies. Quota-based schemes, for instance, can
be trivially enforced using only allocation denial and revocation.
Fortunately, the crudeness of successful global optimizations al-
lows global schemes to be readily implemented by an exokernel.
For example, Xok currently tracks global LRU information that
applications can use when deallocating resources.

We believe that an exokernel can provide global performance
superior to current systems. First, effective local optimization can
mean there are more resources for the entire system. Second, an
exokernel gives application writers machinery to orchestrate inter-
application resource management, allowing them to perform domain-
specific global optimizations not possible on current centralized
systems (e.g., the UNIX “make” program could be modified to
orchestrate the complete build process). Third, an exokernel can
unify the many space-partitioned caches in current systems (e.g.,
the buffer cache, network buffers, etc.). Fourth, since applications
can know when resources are scarce, they can make better use of
resources when layering abstractions. For example, a web server
that caches documents in virtual memory could stop caching docu-
ments when its cache does not fit in main memory. Future research
will pursue these issues.

9 Experience

Over the past three years, we have built three exokernel systems.
We distill our experience by discussing the clear advantages, the
costs, and lessons learned from building exokernel systems.

9.1 Clear advantages
Exposing kernel data structures. Allowing libOSes to map kernel
and hardware data structures into their address spaces is a powerful
extensibility mechanism. (Of course, these structures must not con-
tain sensitive information to which the application lacks privileges.)
The benefits of mapping data structures are two-fold. First, exposed
data structures can be accessed without system call overhead. More
importantly, however, mapping the data structures directly allows
libOSes to make use of information the exokernel did not anticipate
exporting.

Because exposed data structures do not constitute a well-defined
API, software that directly relies on them (e.g., the hardware ab-
straction layer in a libOS) may need to be recompiled or modified
if the kernel changes. This can be seen as a disadvantage. On the
other hand, code affected by changes in exposed data structures will
typically reside in dynamically-linked libOSes, so that applications
need not concern themselves with these changes. Moreover, most
improvements that would require kernel modification on a tradi-
tional operating systems need only effect libOSes on exokernels.
This is one of the main advantages of the exokernel, as libOSes can
be modified and debugged considerably more easily than kernels.
Finally, we expect most changes to the exokernel proper to be along
the lines of new device drivers or hardware-oriented functionality,
which expose new structures rather than modify existing ones.

In the end, some aggressive applications may not work across
all versions of the exokernel, even if they are dynamically linked.
This problem is nothing new, however. A number of UNIX pro-
grams such as top, gated, lsof, and netstat already make use of
private kernel data structures through the kernel memory device
/dev/kmem. Administrators have simply learned to reinstall these
programs whenever major kernel data structures change.

The use of “wakeup predicates” has forcefully driven home the
advantages of exposing kernel data structures. Frequently, we have
required unusual information about the system. In all cases, this
information was already provided by the kernel data structures.

The CPU interface. The combination of time slices, initia-
tion/termination upcalls, and directed yields has proven its value
repeatedly. (Subsequent to our work, others have found these prim-
itives useful [14].) We have used the primitives for inter-process
communication optimization (e.g., two applications communicat-
ing through a shared message queue can yield to each other), global
gang-scheduling, and robust critical sections (see below).

Libraries are simpler than kernels. The “edit, compile, debug”
cycle of applications is considerably faster than the “edit, compile,
reboot, debug” cycle of kernels. A practical benefit of placing OS
functionality in libraries is that the “reboot” is replaced by “relink.”
Accumulated over many iterations, this replacement reduces devel-
opment time substantially. Additionally, the fact that the library is
isolated from the rest of the system allows easy debugging of ba-
sic abstractions. Untrusted user-level servers in microkernel-based
systems also have this benefit.

9.2 Costs
Exokernels are not a panacea. This subsection lists some of the costs
we have encountered.

Exokernel interface design is not simple. The goal of an exo-
kernel system is for privileged software to export interfaces that
let unprivileged applications manage their own resources. At the
same time, these interfaces must offer rich enough protection that
libOSes can assure themselves of invariants on high-level abstrac-
tions. It generally takes several iterations to obtain a satisfactory
interface, as the designer struggles to increase power and remove
unnecessary functionality while still providing the necessary level
of protection. Most of our major exokernel interfaces have gone
through multiple designs over several years.

Information loss. Valuable information can be lost by imple-
menting OS abstractions at application level. For instance, if virtual
memory and the file system are completely at application level,
the exokernel may be unable to distinguish pages used to cache
disk blocks and pages used for virtual memory. Glaze, the Fugu
exokernel, has the additional complication that it cannot distinguish
such uses from the physical pages used for buffering messages [29].
Frequently-used information can often be derived with little effort.
For example, if page tables are managed by the application, the
exokernel can approximate LRU page ordering by tracking the in-
sertion of translations into the TLB. However, at the very least, this
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inference requires thought.
Self-paging libOSes. Self-paging is difficult (only a few com-

mercial operating systems page their kernel). Self-paging libOSes
are even more difficult because paging can be caused by external
entities (e.g., the kernel touching a paged-out buffer that a libOS
provided). Careful planning is necessary to ensure that libOSes can
quickly select and return a page to the exokernel, and that there is
a facility to swap in processes without knowledge of their internals
(otherwise virtual memory customization will be infeasible).

9.3 Lessons
Provide space for application data in kernel structures. LibOSes
are often easier to develop if they can store shared state in kernel data
structures. In particular, this ability can simplify the task of locating
shared state and often avoids awkward (and complex) replication of
indexing structures at the application level. For example, Xok lets
libOSes use the software-only bits of page tables, greatly simplify-
ing the implementation of copy on write.

Fast applications do not require good microbenchmark per-
formance. The main benefit of an exokernel is not that it makes
primitive operations efficient, but that it gives applications control
over expensive operations such as I/O. It is this control that gives
order of magnitude performance improvements to applications, not
fast system calls. We heavily tuned Aegis to achieve excellent mi-
crobenchmark performance. Xok, on the other hand, is completely
untuned. Nevertheless, applications perform well.

Inexpensive critical sections are useful for LibOSes. In tra-
ditional OSes, inexpensive critical sections can be implemented by
disabling interrupts [3]. ExOS implements such critical sections by
disabling software interrupts (e.g., time slice termination upcalls).
Using critical sections instead of locks removes the need to com-
municate to manage a lock, to trust software to acquire and release
locks correctly, and to use complex algorithms to reclaim a lock
when a process dies while still holding it. This approach has proven
to be similarly useful on the Fugu multiprocessor; it is the basis of
Fugu’s fast message passing.

User-level page tables are complex. If page tables are migrated
to user level (as on Aegis), a concerted effort must be made to en-
sure that the user’s TLB refill handler can run in unusual situations.
The reason is not performance, but that the naming context pro-
vided by virtual memory mappings is a requirement for most useful
operations. For example, in the case of downloaded code run in an
interrupt handler, if the kernel is not willing to allow application
code to service TLB misses then there are many situations where
the code will be unable to make progress. User-level page tables
made the implementation of libOSes tricky on Aegis; since the x86
has hardware page tables, this issue disappeared on Xok/ExOS.

Downloaded interrupt handlers are of questionable utility
on exokernels. Aegis used downloaded code extensively in in-
terrupt servicing [44]. The two main benefits are elimination of
kernel crossings and fast upcalls to unscheduled processes, thereby
reducing processing latency (e.g., of send-response style network
messages). On current generation chips, however, the latency of I/O
devices is large compared to the overhead of kernel crossings, mak-
ing the first benefit negligible. The second does not require down-
loading code, only an upcall mechanism. In practice, it is the latter
ability that gives us speed. Downloading interrupt handlers seems
more useful on commercial operating systems with extremely high
overhead for kernel crossing than on exokernel systems. It is easier
to download interrupt handlers into an existing commercial OS than
to turn the commercial OS into an exokernel system.

Downloaded code is powerful. Downloaded code lets the ker-
nel leave decisions to untrusted software. We have found this dele-
gation invaluable in many places. The main benefit of downloaded
code is not execution speed, but rather trust and consequently power:
The kernel can invoke downloaded code in cases where it cannot

trust application code. For example, packet filters are downloaded
code fragments used by applications to claim incoming network
packets. Because they are in the kernel, the kernel can inspect them
and verify that they do not steal packets intended for other applica-
tions. The alternative, asking each application if it claims a given
packet, is clearly unworkable; the kernel would not know how deci-
sions were made and could not guarantee their correctness. Another
example is the use of downloaded code for metadata interpretation:
since the kernel can ensure that UDFs are deterministic and do not
change, it can trust their output without having to understand what
they do.

10 Conclusion

This paper evaluates the exokernel architecture proposed in [11].
It shows how we built an exokernel system that separates pro-
tection from management to give untrusted software control over
resource management. Our exokernel system gives significant per-
formance advantages to aggressively-specialized applications while
maintaining competitive performance on unmodified UNIX appli-
cations, even under heavily multitasked workloads. Exokernels also
simplify the job of operating system development by allowing one
library operating system to be developed and debugged from an-
other one running on the same machine. The advantages of rapid
operating system development extend beyond specialized niche ap-
plications. Thus, while some questions about the full implications
of the exokernel architecture remain to be answered, it is a viable
approach that offers many advantages over conventional systems.
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