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Abstract

Window systems are the primary mediator of user input and output in modern computing systems.
As a result, they play a key role in the enforcement of security policies and the protection of sensitive
information. A user typing a password or passphrase must be assured that it is disclosed exclusively
to the intended program. The interprocess communication functionality that underlies “cut and
paste” must be guarded such that (a) messages transmitted are known to reflect user intentions and
(b) global policies concerning information flow are honored. Most window systems today, including
X11 and Microsoft Windows, have carried forward the presumptive trust assumptions of the Xerox
Alto from which they were conceptually derived. These assumptions are inappropriate for modern
computing environments.

In this paper, we present the design of a new trusted window system for the EROS capability-
based operating system. The EROS Window System (EWS) provides robust traceability of user
volition and is capable (with extension) of enforcing mandatory access controls. To our knowledge
it does not introduce new covert channels into the overall system architecture, and it is not subject
to significant denial of service attacks. The entire implementation of EWS is less than 4,500 lines,
which is a factor of ten smaller than previous trusted window systems such as Trusted X, and well
within the range of what can feasibly be evaluated for high assurance.

1 Introduction
Window systems play a key role in modern computing systems. They serve as the primary mediator of
user input and output, and provide an interprocess communication mechanism (cut and paste) that is widely
used and universally expected. Most modern window systems trace their conceptual ancestry to the Xerox
Alto [26]. As in the Alto design, applications are presumptively friendly and the computer display is a
single-user device. A basic goal of the Alto design was to encourage cooperation among applications in an
environment of trust. These assumptions and goals are inherited by both the X Window System [22] and
Microsoft Windows. Regrettably, they do not correspond well to objective reality.

Window systems have direct access to sensitive information, both in the form of sensitive input (e.g.
passphrases) and timing data. They implement critical paths in support of selected trusted applications (e.g.
the login service). They are necessarily party to the enforcement of global information flow restrictions when
systemwide mandatory access controls are in effect. Current designs include shared mutable resources,
which are an obvious no-no, and provide a remarkable amount of server-side resource used to hold client
data, creating a rich field of opportunity for storage denial of service. They perform operations that have
high variance and observable latency, the combination of which facilitates facilitates both timing denial of
service and covert channel construction. As a result, window systems provide a wealth of vulnerabilities that
attackers can exploit – even in otherwise compartmentalized systems. Attention to security in their design
is vital.

In the late 1980’s there was a flurry of work on compartmented mode workstation (CMW) implementa-
tions. Proceeding from requirements put forward by Mitre [27], TRW developed Trusted X, an implementa-
tion of the X Window System suitable for multilevel secure environments based on the CMW requirements
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[10]. This effort identified both major and minor design flaws in X, many of which could not be fixed com-
patibly and remain issues today. Related work at Mitre was conducted as part of the compartmented mode
workstation effort [4, 15].

The CMW effort gave essentially no attention to potentially hostile actions occurring within an MLS
compartment. As noted by Abrams [1], this is also true of the Trusted Computer System Evaluation Criteria
[7] and (in our opinion) the Common Criteria [11]. Viewed in light of current-day commercial threats,
this focus of attention is exactly backwards. In commodity computing we largely assume that the user is
trusted with respect to information flow decisions, and that hostile software is the primary source of threat.
We do not object to information moving from one process to another provided we can trace the transfer to
some authorizing action performed by the user, such as a keystroke corresponding to a “paste” operation.
Compartments, if they exist, serve as boundaries across which actions are to be audited. It would be useful
to have a window system that addressed this problem space.

The EROS Window System (EWS) is a new trusted window system for the EROS capability-based op-
erating system. It is a “fresh start” design that provides robust traceability of user volition and is capable
(with minor extension) of enforcing mandatory access controls. Building on the primitive mechanisms of
the EROS operating system, we have created a window system that is a factor of ten smaller than previous
trusted window systems such as Trusted X. The implementation provides an efficient, double-buffered dis-
play system that largely eliminates covert channels from the display system.1 The implementation is under
4,500 lines of code. Future enhancements will include a high-performance 3D graphics rendering pipeline
comparable in performance to the direct rendering [12] of X11 or Microsoft’s DirectX mechanism. This
enhancement is not expected to significantly increase the size of the security-enforcing code.

This paper presents the objectives, design, and analysis of EWS.

2 Objectives and Overview
It was an explicit goal of X Version 11 to specify mechanism, not policy.

David Rosenthal, Inter-Client Communications Conventions Manual [21]

In their extensive security review of X11, Epstein and Pisciotto [9] state that “Authentication is the most
obvious security problem with X.” In today’s commercial threat environment, this characterization is both
generous and mistaken. The most obvious security problem in X is the absence of policy of any sort. The
goal of the X11 designers was to maximize the ability of applications to interoperate, partly to promote a
new vision of computer interaction. In the quest for a policy-free design, even the user is disintermediated
from control. Given a request for the content of the paste buffer from an application, there is no way that
an X server can determine whether the user has performed any action authorizing that paste. X assumes not
only that applications are cooperative, but that their actions reflect the volition of the user. In a world of
increasingly hostile applications, this trust assumption has become an unsupportable luxury.

EWS proceeds from the diametrically opposing position: our goal is to ensure that the user is completely
in control, and complete isolation between applications is our default. Having adopted confinement as a fun-
damental organizing principle within the EROS system, we are unwilling to permit unrestricted information
flow at the window system. Our goal is to ensure that any communication between window system clients is
authorized by the user and proceeds only in the direction that the user indicated. If this type of authorization
control can be universally achieved in all interclient communications, mandatory controls become relatively
easy to enforce.

That said, there is an enormous user investment in the idioms of current window systems. In partic-
ular, the “cut and paste” and “drag and drop” idioms are now universally adopted and expected. Users

1 Covert channels undoubtedly remain in the underlying operating system. The claim here is only that the window system protocol
and design do not introduce new channels of this form.
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have become accustomed to overlapping window systems, and to applications with closely coupled, render-
intensive interaction loops. Given this, we wished to create a window system in which the “look and feel”
of current usage idioms could be largely preserved.

2.1 Principles and Goals

After reviewing the conclusions of Epstein and Piccioto, we arrived at a list of design principles and goals
for EWS:

R1. Isolation No operation performed on one client session should be able to affect or observe state
associated with other sessions – in most cases, not even the state of subsessions.

R2. No Mutable Sharing The display server should provide no shared mutable state to clients.

R3. Restricted Communication The display server should provide strictly limited interprocess
communication facilities. Provide what is necessary to support current usability idioms; nothing
more.

R4. Volitional Traceability No communication may occur between applications through the dis-
play server unless we can demonstrate an authorizing user action.

R5. Resource Conservatism The display server should not enqueue either input requests or events.
Both promote resource denial of service and covert channels. Output events may be queued, but
total output queue length should be bounded. More generally, the display server should operate
using only bounded resources. Dynamically allocated resources, if any, should come from the
client.

R6. Small Size The display server should be small enough to be evaluable, and should avoid com-
plex algorithms wherever possible. Our initial goal was to achieve the 30,000 LOCC target of
Trusted X.

R7. Low Variance Each input event should be delivered to exactly one recipient application, and
each operation should complete in fixed, small time. The display server should not multiply
messages. Similarly, each incoming request should in general have one response. When more
than one response is necessary, the total number should be a small constant integer.

With three exceptions, we were able to achieve these objectives:

1. Clipboard interaction establishes a temporary unidirectional communication channel. It necessarily
involves notification of both sides by the display server, which is a small multiplication of messages
(and therefore violates R7).

2. Our design supports hierarchical client subsessions. This hierarchy expresses visual containment
only; subsessions are fully isolated from their parent sessions for communication purposes with one
exception: destruction of a session implies destruction of all descendant subsessions.

3. Window structures are dynamically allocated using display server memory (violates R5). A quota
system is needed to limit communication achieved by exhausing the total number of available server
window structures. A quota of this sort will also limit attacks that operate by creating large numbers
of windows. This has not yet been implemented.

3



2.2 Design Overview

The functions of a display server can be divided into five main categories:

1. Input processing, including events and client requests

2. Rendering and display update.

3. Interprocess communication (cut and paste).

4. Trusted user interaction and feedback, which includes window decorations, labeling, and trusted path
management.

5. Isolation support.

We will discuss how each of these is approached in EWS in the sections that follow, and then examine how
a variety of security concerns are addressed by the design.

As a capability system, EROS is object-based. In consequence, EWS is an “object server.” and re-
quests are performed by synchronously invoking operating-system protected capabilities. It has become
conventional to speak of a server that responds to interprocess procedure calls in this fashion as an “RPC
Server.” We emphasize that all interprocess communications in EWS are local remote procedure calls [5].
The EROS capability invocation mechanism [24] provides a high-performance transport for such invoca-
tions. For reasons that will become clear below, the synchrony of these invocations is not a bottleneck to
display performance.

The EWS display server does not directly implement remote connection or cryptographic transport layer
protection. Both are cleanly separable functions that have generic utility for many applications. There is no
reason that the display system should duplicate this function when it can be satisfactorily implemented in
a seperably assurable component. Cox et al. [6] propose a compelling architecture for separating transport
security and key management from applications.

The display server also eschews authentication functionality. A client either possesses an EWS ClientSes-
sion capability or they do not. User accounts are created with an initial desktop session that can be detached
and reattached by the login subsystem. Responsibility for subsession creation initially lies with the user’s
primary “shell.” In a multilevel secure system, this shell would be a trusted application have responsibility
for creating compartments and associating security labels with the subordinate ClientSession capabilities
that it grants to applications within these compartments.

3 Input Processing
In the EWS design, the hardware frame buffer and hardware input devices are “owned” by the display

server process (Figure ??). Each input device has an associated process that blocks on that device waiting
for a hardware-level input event to occur. This event is reprocessed into canonical form by the helper
process, and the helper process then invokes the display server to “post” the event using a synchronous RPC
operation. From the display server perspective, all interactions arrive as remote procedure calls from some
process. Requests from device helpers and requests from generic clients arrive on distinguishable interfaces
by virtue of the fact that the associated RPC invocations are performed on distinct capabilities.

In contrast to many other display servers, incoming requests are generally not queued by the display
server. Each is processed immediately and enqueued on the outbound event queue of the receiving client.
In the case of mouse events, the events are delivered to the client session owning the window in which the
event occurred. A MouseDown event causes all subsequent mouse events until the corresponding MouseUp
to be delivered to the window in which the MouseDown occurred (but see the discussion of “drag and drop”
in Section 5). In-order processing imposes three constraints on the display server:
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1. Requests must be “prompt,” by which we mean that their completion must not involve any operation
that might be blocked pending the completion of some other request. An acceptable exception to this
rule is requests that explicitly request to block.

As discussed by Mercer [14], blocking or queueing requests results in priority inversion, which in turn
creates a covert signalling opportunity.

2. Requests must be low latency.

Requests executed by the server run under a different schedule than that of their client. Their latency
therefore can be seen as a source of variance in real-time context switch latency. Given the design of
the EWS display server, it is more effective to establish a small upper bound on request latency than
to attempt priority queueing solutions that would require a operating system support for multilevel
scheduling.

3. Requests should not incur any great variance in processing latency. Variance of this form can be
exploited for both resource denial of service and covert signalling.

While the display server does not enqueue requests in general, it does perform queueing in connection
with client-requested rendevous and client event delivery. When a client issues a WaitMouseEvent request,
the server checks the per-client-session list of undelivered events (which is bounded). If one exists, it is
returned, otherwise the client request is deferred using the RETRY mechanism of the underlying capability
invocation transport. The RETRY mechanism allows the server to redirect the client to an operating system
stall queue whose release is controlled by the display server. In addition, the display server notes that there
is now at least one client enqueued in this fashion. Queueing the client completes the request. At a later
time, an incoming event may cause this client to be awakened, whereupon it will reissue its request.

The difference between retry-based queueing and application-level queueing is subtle but significant.
Clients queued using RETRY do not block other requests, and their reactivation honors the scheduling policy
of the operating system. Application level queue implementations, in contrast, generally do not have access
to OS-level priority information. Even if they did, dynamic adjustments to priority cannot safely be revealed
to such applications. EROS directly exposes the operating system queueing mechanism via a capability-
protected interface and provides operations that allow the display server to exploit it for queueing purposes.

4 Sessions, Rendering and Display Update
Every EWS window is created by performing a CreateWindow operation on a ClientSession capability.
Every ClientSession has an associated containing window, and the windows created using that ClientSes-
sion are created as child windows of the ClientSession’s parent window. Client sessions are hierarchical:
having created a window

�
, the holder of a ClientSession capability can create a new ClientSessionCreator

capability whose parent window is
�

. This new ClientSessionCreator can be provided to newly instantiated
applications, and effectively defines the root window with respect to that application. The ClientSession-
Creator can be used to create arbitrary new ClientSession capabilities.

Operations in one session are not observable by other sessions – not even by parent sessions. Input events
are delivered to the owning session of the window in which they occur. The parent restriction allows us to
construct graphical shells that appear to contain their applications. Interactions with these client applications
are not be observable by the shell.

The intermediate ClientSessionCreator provides a mechanism authentication. The receiving client is
able to perform a test on the ClientSessionCreator verifying that it is really a capability to the display server.
The client is then assured that sessions created using this ClientSessionCreator are exclusively held by the
client, and cannot be spied on by the owner of the parent window. Similarly, since the parent window owner
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never possesses the ClientSession window, the parent cannot create windows that might attempt to deceive
input processing directed to the client.

4.1 Client-Side Rendering

One implication of the EWS latency rules is that a trusted display server cannot be responsible for draw-
ing operations. In the presence of clipping, operations such as DrawPolygon may involve several orders of
magnitude more processing than line drawing. Further, in the absence of “backing store,” server-side draw-
ing necessitates that update notices be sent from the display to the client when portions of its windows are
revealed. It is usually more space-efficient to have the application redraw than to save the bits, and memory
was precious on early workstations. One hazard of this design is that a client can manipulate the visibility of
its windows so as to exploit expose events as a signalling channel. A second hazard is that delivering these
expose events imposes significant execution costs on the display server.

Because of our concern about the latency variance of drawing operations, we initially considered restrict-
ing the client to constructing complex structures using successive DrawTriangle commands following
the logic of OpenGL [23], but abandoned this approach when a faster and simpler method became apparent:
shared memory.

EWS uses shared memory maps between client and server to represent window state. When a client
wishes to create a window, it supplies to the display server a read-only shared memory region containing
a bitmap. The display server maps this shared region, and subsequently performs bitblt operations to
transfer portions of the bitmap to the physical display. The client renders directly into the bitmap, and
advises the server when changes have occurred by issueing an UpdateRectangle request to the server.
Note that this reverses the flow of traditional update notification, and eliminates the channel associated with
X11 update notices. The design is conceptually similar to the Apple Quartz architecture [3], and can be
extended to encompass the high performance 3D pipeline features of Quartz Extreme. A side benefit of
client-side rendering is that the server is no longer responsible for font handling. The EWS display server
contains a single, compiled-in font that is used for title bars.

Given the underlying EROS primitives, it is possible for the client to rescind the shared memory region
without notice to the display server. This may occur out of malice or because the client’s storage is revoked
for reasons beyond its immediate control. The display server bltblt routine is the only routine in the
display server that reads the client memory region. It is wrapped by an exception handling catch block. In
the event of an invalid memory reference, the display server assumes that the client has reneged on its entire
interaction contract and rescinds that client session.

Note that the shared mapping contract ensures that a given client can detect at most one bitblt oper-
ation performed by the display server, and only by using a mechanism that causes the client session to be
severed.

4.2 Invisible Windows

To support isolation in nested client sessions, EWS provides restricted support for invisible windows. An
invisible window has no backing bitmap, and is not a candidate for input events. In order to receive input,
a window must be visible. The role of an invisible window is to provide a coordinate space that contains a
subordinate client session.

We note that restricting invisible windows does not entirely resolve problems of event hijacking. Prag-
matically, there is no difference in appearance between an invisible window and a borderless visible window
all of whose pixels have fully or nearly transparent alpha values. At present, EWS does not support border-
less top-level windows.
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5 Interprocess Communication
Conventional window systems handle cut and paste interactions using a broadcast communication mecha-
nism. When a user performs a “cut” operation, the application performing the cut claims ownership of the
cut buffer by sending a message to the display server. The server retransmits this notification to all clients
who have registered an interest in clipboard notifications. This approach, and the security issues that arise
from it, are well documented [15]. In EWS, no events are transmitted to the destination until the user per-
forms a “paste” action, and then only if the communication is permitted by applicable mandatory access
controls.

Tying the server paste logic back to a clearly identifiable user action is necessary to limit certain types
of covert communication. In the absence of a traceable user action, any client could claim that a paste
had occurred at any time. Cut actions are similarly hazardous, because a hostile client could interfere with
permitted communication by falsifying cut events. Collectively, these concerns motivate a desire to make
“paste” into a traceable atomic action. For keyboard-initiated cut or paste (e.g. Control-V), traceability is not
a significant challenge. The server maintains a key table indicating which well-known keystrokes authorize
cut and paste actions. The drag and drop protocol similarly has clearly identifiable interaction events.

Mouse-initiated cut and paste operations are trickier, because there is no simple way to relate mouse
actions to application claims that a cut or paste has been performed. We considered moving menu manage-
ment into the display server, but felt that this would both complicate the display server and unnecessarily
restrict application designers. Further, it would require significant changes in existing graphical toolkits and
would therefore present an impediment to portability.

5.1 Traceable Cut and Paste

EWS we resolves these problems by introducing a new type of invisible window. We require that the visible
regions conveying cut and paste authority by identified by the application. The cut and paste windows accept
no events, but clicks “passing through” these windows result in clipboard authorization. For each of these
special windows there is a distinguished standard (server defined) cursor used to indicate when the mouse
is above these regions. When a MouseUp event occurs within one of these special windows, the display
server knows that an authorizing user action has occurred. To ensure positive user feedback, the server will
not perform a cut or paste operation unless the distinguished cursor has been visible for a minimum amount
of time. This prevents unintended cut or paste actions that might result from randomized modifications of
the window positions, but allows the application to simulate multiple active regions by relocating the active
region to fall under the mouse as the mouse moves.

Note that both the “cut” and the “paste” operation require tracing. The user must know both where
the data is coming from and where the data is going to. The EWS display server keeps a record of which
windows own the cut and paste contexts at any given time.

5.2 Drag and Drop

In general, the EWS design avoids situations where one client gets notified of interaction sequences asso-
ciated with another. This was the motivation for directing mouse sequences beginning with a MouseDown
and ending with a MouseUp to the MouseDown window.

There is one widely accepted user idiom that conflicts with this handling of mouse events: drag and
drop. We have resolved this by providing direct support in the display server. At any time after receiving a
MouseDown followed by a MouseMove, the origin client window can optionally inform the display server
that this mouse sequence is a drag action. In that case, subsequent MouseMove events may be delivered to
other windows in the form of DragOver events, and the final MouseUp event (which completes the drag and
drop idiom) is delivered to both the originating and the destination window.

Two points should be noted here with regard to covert channels and multilevel security:
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� The display server is aware that the drag and drop idiom is a precursor step to an act of communication.
DragOver and MouseUp events are delivered to the window under the mouse only if that window
would be permitted to receive the data transfer implied by the drag and drop idiom.

� DragOver events are not a significant covert channel, because they are limited by the rate of user input.

5.3 MLS Format Negotiation

In MLS systems, a problem with both “cut and paste” and “drag and drop” can arise from format negotiation.
The client is prepared to provide some number of different formats, but does not wish to render all of them
because most of them will not be used. The recipient has a (hopefully intersecting) set of formats that
it wishes to receive. At a minimum, this set includes the native format (e.g. so that the drawing can be
transferred back to the original application for subsequent editing) and at least one common format that the
recipient can render. The usual approach to negotiating formats is that the sender sends a list of transmissable
formats and the recipient replies with the subset that it wants. This is acceptable in a single-compartment
environment, but in an MLS environment, this downward communication is not permitted.

An elegant way of eliminating the downward communication problem is feasible in systems that, like
EROS, provide a confinement mechanism [13, 25]. The EROS operating system provides a utility service
called a constructor that instantiates new programs. Among the services provided by the constructor are the
ability to verify that newly instantiated programs created by that constructor have no outward communica-
tion channels. Building on this this utility, we can divide the problem into two parts: (1) transmitting the
singleton “native” format of the sender and (2) transmitting a set of confined converters that know how to
translate from this native format to other formats that the client knows how to produce.

The main problem with transmitting the memory region containing the singleton native format is dura-
bility. The memory region containing the native format material will be needed for an unbounded amount
of time, and a recipient in a higher-level compartment is not permitted to inform the sender in a lower-level
compartment that it is done with the data. Our solution is to require every sender to supply a constructor for
initially empty, confined memory regions that are built from sender storage. The native format is serialized
to this region, the region is frozen (to prevent further modification by either party), and a capability to it is
transferred to the recipient. The recipient is hazarded by the fact that the sender can reclaim the storage at
any time. A recipient wishing to retain the memory region for any length of time is therefore well-motivated
to copy its content into a recipient-supplied memory region. In the current implementation, the sender can
detect the deallocation of the memory region by the receiver and can use observation of deallocation latency
for signalling purposes.2

Unfortunately, we cannot simply transfer a vector of constructor capabilities for the converter programs.
While the display server could verify that each member capability is a leak-free constructor capability, the
sender could subsequently alter some vector element to be a capability to be something else. Instead, we
have the sender transmit a constructor to a single, confined conversion agent. The conversion agent can
be asked for the set of formats it knows how to produce and can then be asked to produce each desired
format in turn. This is most easily implemented by having each converter be a separately constructable
utility application. A hidden advantage in this design is that the storage needed to perform the conversion
is provided by the recipient rather than the sender. Note that all the constructors involved are created at the
time the application is installed. No paste-time instantiation of converters is required.

The final cut and paste transfer protocol, including format negotiation, goes as follows:

2 To limit this hazard, we will shortly introduce a secure storage exchange operation by which ownership of the storage is trans-
ferred to the recipient at the time of the paste operation and the sender immediately sees their free resource pool restored. Secure
resource interchange of this form is generically useful in many other circumstances.
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1. The display server instantiates a new memory region using the region constructor supplied by the
sender. It provides the resulting region region capability to the sender.

2. The sender writes its native paste format to the new memory region and informs the display server
when it has completed doing so. During this step, it also provides a capability to the converter con-
structor.

3. The display server now “freezes” the resulting memory region, preventing either sender or receiver
from performing further modifications.

4. The display server now provides both the native memory region capability and the capability to the
converter constructor to the recipient.

The resulting cut and paste interaction supports full format negotiation with no downward channel.

6 User Interaction
Because the window system is the primary mediator of user input, there are certain operations users per-
formed that it must assure. Most of these can be viewed as trusted path issues, and we will consider three
here: title bars, window labeling, and pass phrase entry.

6.1 The Title Bar

The title bar problem is a problem of control: does “minimize” mean “inform the application that we would
like to minimize”, or does it mean “tell the application that we have minimized it?” Indeed, should we tell the
application of such actions at all? The decision matters primarily because it determines who is responsible
for rendering and interpreting the title bar. Our policy in EWS is that these functions are directives rather
than requests, and in consequence that the display server must handle these functions. In the work reported
here, title bar and border rendering are performed by the display server.

A second concern with the title bar is the problem of font forgery. If applications are permitted to set
the title bar font, they are in a position to alter the information displayed. In EWS, title display is managed
by the display server using a fixed, compiled-in font. In a production implementation, we would probably
allow the user to select from a number of predefined fonts using a privileged application, but eliminating the
need to render fonts within the display server provided a significant reduction of code.

6.2 Window Labeling

In a multilevel secure environment, window security labels are required, and the requirements specified for
Compartmented Mode Workstations [27] are generally taken to be definitive. Unfortunately, these require-
ments are incomplete. There is no label that the display server can apply on a window border that cannot
be visually forged by a client. Using alpha blending to “dim down” non-focus windows or identify trusted
windows is insufficient: an application can implement a visibly indistinguishable child window and dim it’s
own primary window using the same algorithm.

The EWS displays server defeats this attack by prominently featuring the border of the focus window
using a bright color while dimming non-focus windows. A bright border color is chosen because dimming
of darker colors using alpha blending is less easily noticed by the eye. Separately, the EWS display server
reserves a band at the bottom of the display that is used to provide labeling feedback.
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6.3 Pass Phrase Entry

Pass phrases present a particular challenge in a windowed environment. Because the input is inherently
sensitive, it is important for the user to know that they are providing it to the intended application.

Because EROS is a capability system, many operations that initially appear to require trusted path in-
teraction do not. For example, there is no need for a trusted path to support a trusted SaveAs agent. The
protection in the SaveAs case devolves from the fact that only the SaveAs agent holds a capability to the
user’s file system. An application might forge the appearance of a SaveAs dialog, but cannot forge posses-
sion of the necessary file system capability.

When the “protection by guardianship” design pattern is widely applied, the only remaining require-
ments for trusted path interactions arise in three cases:

� Password prompts

� Cryptographic key pass phrases

� Login authentication

This list is small enough and specialized enough that it is reasonable to declare that these components
must be trusted subsystems. A client application may independently instantiate many copies of the trusted
password validator, but the interaction between client and validator is restricted: the client supplies a user
name and the validator returns true or false depending on whether the user typed the correct password.
Similarly, there may be many instantiations of our equivalent to Factotum [6], but none of these reveal
decrypted cryptographic key bits to their client applications.

In the context of a capability-based system, it appears possible to impose the restriction that all trusted
paths are connections between the display and a small number of trusted applications. If these applications
are trusted, then in particular they can be trusted to identify themselves honestly. We have therefore resolved
the trusted path problem in EWS by providing a distinguished “trusted client session” interface. A trusted
client session is one whose client is a trusted application. It otherwise implements the same operations as a
normal client session. When a window associated with a trusted client session is active, all other windows
are overlayed with a red alpha-blended overlay, and the reserved labeling region at the bottom of the display
is distinctively marked.

7 Vulnerability Analysis
The vulnerability of the EROS Window System is drastically smaller than that of X11 or Trusted X as the
result of four architectural decisions:

� The removal of general rendering responsibility from the display server. Our server implements only
bitblt and rectfill operations, both of which have mature, well-tested implementations.

� The simplification of the event handling logic.

� The elimination of authentication and network communication responsibilities from the server.

� Our abandonment of the X11 communication model in favor of accountable, confined information
transfer.

We suspect, but have not endeavoured to prove, that the covert channel bandwidth available through EWS
is less than that of X11. There are clearly fewer points of implicit rendevous, and generally reduced vari-
ance across EWS operations that might be exploited for timing measurement. The absence of server-side
queueing also helps.
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While these changes clearly reduce the vulnerability of the server, it is important to ask what new
responsibilities have been imposed on clients that might have security implications. Clients now carry two
blocks of content that were not required in the X11 design:

� A code library implementing rendering, which may be compromised.

� A font library, which is probably shared across multiple applications.

Our feeling is that the rendering library does not introduce a substantial new threat. Applications already
depend extensively on widget libraries; the introduction of the rendering library into the build does not
introduce any new problems that were not already present.

The font library is a greater concern, though fonts were not really protected under the X11 design either.
We do not know of any technique capable of preventing font forgery by the font distributor. The EROS
capability system provides sufficient protections that fonts cannot practically be modified after installation,
and their are no display operations that allow one client to modify the fonts used by another.

The current EWS prototype is vulnerable to resource exhaustion. A hostile client could create enough
windows to exhaust the virtual memory of the display server. Our plan for this is to restrict the total number
of simultaneous windows (say, to 65,536), and reserve a subset of this for allocation by trusted applications.
We can then construct a trusted usage reporting agent that would alert the user to this abuse and allow the
user to destroy the offending application.

8 Related Work
Considering the importance of window systems in modern computing, there has been surprisingly little work
on security in window systems. We have discussed throughout this paper the impact of Trusted X [9, 8] and
the Compartmented Mode Workstation [4, 15, 16, 27] efforts.

A key decision in the design of EWS was the adoption of local shared memory to support our basic
rendering model. This was encouraged by our experiences as early users of the Blit [17, 19] bitmapped
terminal, and later by the architectural success of the Gnot (the original display for Plan 9 [18]). The success
of these two systems convinced us that the argument for generic remoting advanced by Gettys and others is
not compelling. Even in the absence of a cooperative display update protocol, bitmap propagation strategies
such as those used by tools like VNC [20] do an excellent job of providing efficient display update while
reducing the displays server’s trusted computing base by an order of magnitude. The display update protocol
used in EWS is actively VNC-friendly. For applications such as movie display or gaming where low latency
is required, remote connections are unsatisfactory from a usability standpoint. In the movie case, there is
also a substantial bandwidth (and therefore power) cost imposed by performing decompression before the
bits arrive at the destination display. In short, generic remoting appears to be viable only in the cases where
interactive performance does not matter.

While many other well-known window systems exist, most notably those of the Macintosh [2, 3], Mi-
crosoft Windows, and the Alto [26], none have given particular attention to the possibility of hostile appli-
cations.

9 Acknowledgements
While it has diverged in recent years, the original EROS architecture was closely derived from that of
KeyKOS. No work derived from KeyKOS could be complete without acknowledging the principal architects
and implementors of that system: Norman Hardy, Charlie Landau, and William Frantz. Each of these
individuals has participated in and encouraged work on the EROS system.

While this paper does not present X11 as a positive example for purposes of security, it is a system that
contains many brilliant ideas that have had a strong influence on the work of the authors for many years. In
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large measure, X11 and its predecessors are responsible for the acceptance of bitmapped computer graphics
today. Many years ago, Phil Karlton spent a fair bit of time explaining the design of X11 to Jonathan S.
Shapiro while we worked on the Silicon Graphics ProDev tool set. More recently, Jim Gettys offered some
of his rationale for the desirability of remote display access. Ultimately, though it was not his intention, he
reaffirmed our view that remoting didn’t belong in the window system.

Jeremy Epstein was gracious enough to review a draft of this paper, and offered a number of helpful
comments.

10 Conclusion
We have presented the design of the EROS Trusted Window System, which provides robust traceability of
user volition and is capable (with extension) of enforcing mandatory access controls. To our knowledge it
does not introduce new covert channels into the overall EROS system architecture, and it is not subject to
significant denial of service attacks. The EWS implementation is less than 4,500 lines, which is a factor of
ten smaller than previous trusted window systems such as Trusted X, and well within the range of what can
easily be evaluated for high assurance.

Based on our experience with both the implementation and the result, the EROS Window System is
practical, usable and assurable. As is so often the case in asking how to secure subsystems, the key lay
in deciding what to remove. What is staggering in this instance is that the trusted component of EWS is
between 2% and 5% of the lines of code of X11 with no user-apparent reduction in functionality or utility. It
can readily be extended to new devices, and extension of this form would not entail a complex re-evaluation
effort. Most of the work would lie in the associated device helper, which is isolated from the display server
by a protection boundary.

While we have not attempted to tune the EWS implementation for performance, the evidence of the
widely-used Apple Quartz 2D implementation suggests that final performance should be acceptable.

The small size of EWS provides a partial validation of the EROS design. A key idea in EROS is that
breaking applications into small, protected components yields more secure applications and often allows
smaller programs to perform very powerful functions by leveraging existing components.

Both EROS and the EROS window system implementation will be accessable via the EROS web site at
the time of publication.
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