
Paradigm Regained:
Abstraction Mechanisms for Access Control

SRL Technical Report SRL2003-03
Department of Computer Science

Johns Hopkins University

Mark S. Miller Jonathan S. Shapiro
Hewlett Packard Laboratories, Johns Hopkins University

Johns Hopkins University shap@cs.jhu.edu
markm@caplet.com

Abstract. Access control systems must be evaluated in part on how
well they support the Principle of Least Authority (POLA), i.e., how
well they enable the distribution of appropriate access rights needed for
cooperation, while simultaneously limiting the inappropriate prolifera-
tion of access rights which would create vulnerabilities. POLA may be
practiced by arrangement of permissions and by abstraction of access.
To date, access control systems have been evaluated only by their ef-
fectiveness at POLA-by-arrangement.

Working in the original capability model proposed by Dennis and van
Horn, we show how actual systems have used abstraction to enforce re-
vocation, confinement, and the *-properties—policies whose enforce-
ment has been “proven” impossible by arrangement-only analysis. To
account for these abilities, analysis must also examine the behavior of
security-enforcing programs (which are usually simple) to see how
they limit the authority of arbitrarily complex untrusted programs. The
original capability model, analyzed in these terms, is shown to be
stronger than is commonly supposed.

1. Introduction

We live in a world of insecure computing. Viruses regularly roam our networks caus-
ing substantial damage. By exploiting a single bug in an ordinary server or applica-
tion, an attacker is able to compromise a whole system. Bugs scale linearly with code
size, so vulnerability usually increases over the life of a given software system.
Lacking a readily available solution, users have turned to the perpetual stopgaps of
virus checkers and firewalls. These stopgaps do not offer any viable long-term solu-
tion: they fail to provide the defender with any fundamental advantage over the at-
tacker.

In large measure, these problems are failures of access control. All widely-de-
ployed operating systems today—including Windows, UNIX variants, Macintosh,
and PalmOS—routinely allow programs to execute with dangerously excessive and
largely unnecessary authority. For example, when you run Solitaire, it needs only to
render into its window, receive UI events, and perhaps save a game state to a file you
specify. Under the Principle of Least Authority (POLA—closely related to the Princi-

Submitted to the Eighth Asian Computing Science Conference (ASIAN'03)
Tata Institute of Fundamental Research, Mumbai India, December 10-13 2003

ple of Least Privilege [Saltzer75]), it would be limited to exactly these rights. In-
stead, today, it runs with all of your authority. It can scan your email for interesting
tidbits and sell them on eBay to the highest bidder; all the while playing only within
the rules of your system. Because applications are run with such excessive authority,
they serve as powerful platforms from which viruses and human attackers penetrate
systems and compromise data. The flaws exploited are not bugs in the usual sense.
Each operating system is functioning as specified, and each specification is a valid
embodiment of its access control paradigm. The flaws lie in the access control
paradigm.

By access control paradigm we mean an access control model plus a way of
thinking—a sense of what the model means, or could mean, to its practitioners and of
how its elements should be used.

As system designers, we are concerned with authority rather than permissions.
Permissions determine what actions an individual program may perform on objects it
can directly access. Authority describes the effects a program may cause as deter-
mined both by the arrangement of permissions and by the permitted actions of other
programs. To form a coherent understanding of access it is therefore necessary to
reason about the interactions between permissions and program behavior in a unified
way. If we are unable to reason about access, it seems self-evident that we are equal-
ly unable to reason about access control. While Dennis and van Horn's 1966 paper,
Programming Semantics for Multiprogrammed Computations [Dennis66] clearly
suggested both the need and a basis for a unified semantic view of permissions and
behavior, we are unaware of any formal analysis pursuing this approach in the securi-
ty, programming language, or operating system literature.

Over the last 30 years, the formal security literature has reasoned about bounds on
authority exclusively from the evolution of state in protection graphs—the arrange-
ment of permissions—under the implicit assumption that all programs are hostile.
While conservatively safe, this approach explicitly omits consideration of security
enforcing programs. Like the access it controls, security policy emerges from the in-
teraction between the behavior of programs and the underlying protection primitives.
Unfortunately, the prevailing formal analysis approach is unable to capture the fur-
ther bounds trusted programs place on the authority available to untrusted programs.
This results in “false negatives” that have led a number of researchers to mistaken
conclusions about the feasibility of policy enforcement in certain access control mod-
els. In the process, these results have diverted attention from the possibility that a
more effective access control model has existed for 37 years.

In this paper, we offer a new look at the original capability model proposed by
Dennis and van Horn [Dennis66]—here called object-capabilities. Our emphasis—
which was also their emphasis—is on expressing policy by using abstraction to ex-
tend the primitive expressiveness of object-capabilities. Using abstraction, object-ca-
pability practitioners have solved problems like revocation, overt confinement,1 and
the *-properties. We show here the logic of these solutions, using only functionality
available in Dennis and van Horn's 1966 Supervisor, hereafter referred to as “DVH.”

1 Semantic models, specifications, and correct programs deal only in overt causation.
Since this paper examines only models, not implementations, we ignore covert
channels. In this paper, except where noted, the “overt” qualifier should always be
assumed.

To understand how object-capability practitioners build abstractions to solve these
problems, we show how simple and tractable programs can be used to bound the au-
thority available to arbitrarily complex, unanalyzed, and potentially hostile programs.
In the process, we show that many policies that have been “proven” impossible are in
fact straightforward.

The balance of this paper proceeds as follows. In “Terminology and Distinctions”
we explain our distinction between permission and authority, adapted from the take-
grant distinction between de jure and de facto transfer. In “How Much Authority
Does ‘cp’ Need?”, we use a pair of Unix shell examples to illuminate the stark con-
trast between ACLs and object-capabilities. In “The Object-Capability Paradigm”,
we explain the relationship between the object-capability paradigm and the object
paradigm. We introduce the object-capability language E which we use to show ac-
cess control abstractions. In “Confinement” we show how object-capability systems
confine programs rather than uncontrolled subjects. We show how confinement en-
ables a further pattern of abstraction, which we use to implement the *-properties.

2. Terminology and Distinctions

For the following discussion, we say a direct access right to an object gives permis-
sion to a subject to invoke the behavior of that object. Here, Alice has direct access to
/etc/passwd, so she has permission to invoke any of its operations. She accesses
the object, invoking its read() operation.

Alice /etc/passwdread

subject
client

direct access right
permission

access
invocation

object
provider

Fig 1. Access diagrams depict protection state.

By subject we mean the finest grain unit of computation on a given system that
may be given distinct access rights. Depending on the system, this could be anything
from: all processes run by a given user account, all processes running a given pro-
gram, an individual process, all instances of a given class, or an individual instance.
To encourage anthropomorphism we use human names for subjects.

By object, we mean the finest grained unit to which separate access rights may be
provided, such as a file, a memory page, or another subject, depending on the system.
Without loss of generality, we model restricted access to an object, such as read-only
access to /etc/passwd, as simple access to another object whose behavior embod-
ies the restriction, such as access to the read-only facet of /etc/passwd which re-
sponds only to queries.

Any discussion of access must carefully distinguish between direct and indirect
access (adapted from Bishop and Snyder’s distinction between de jure and de facto
transfer [Bishop79]). Alice can directly read /etc/passwd by calling read(…)
when the system’s protection state says she has adequate permission. Bob (unshown),
who does not have permission, can read /etc/passwd so long as Alice sends him

copies of the text. When Alice and Bob arrange this relying only on the “legal” overt
rules of the system, we say Alice is providing Bob with an indirect access right to
read /etc/passwd, that she is acting as his proxy, and that Bob thereby has authori-
ty to read it. Bob’s authority derives from the arrangement of permissions (Alice's
read permission, Alice’s permission to talk to Bob), and from the behavior of sub-
jects and objects on permitted causal pathways (Alice’s proxying behavior). The thin
black arrows in our access diagrams depict permissions. We will explain the resulting
authority relationships in the text.

The protection state of a system is the arrangement of permissions at some instant
in time, i.e., the topology of the access graph. Whether Bob currently has permission
to access /etc/passwd depends only on the current arrangements of permissions.
Whether Bob eventually gains permission depends on this arrangement and on the
state and behavior of all subjects and objects that might cause Bob to be granted per-
mission. We can't generally predict if Bob will gain this permission, but our safety
may demand that we ensure he cannot.

From a given system’s update rules—rules governing permission to alter permis-
sions—one might be able to calculate a bound on possible future arrangements by
reasoning only from the current arrangement.2 This corresponds to Bishop and Sny-
der's potential de jure analysis, and gives us an arrangement-only bound on permis-
sion. With more knowledge, one can set tighter bounds. When the state and behavior
of some subjects and objects are also taken into account, we have a tighter partially
behavioral bound on permission.

 Bob’s eventual authority to /etc/passwd depends on the arrangement of per-
missions, and on the state and behavior of all objects on permitted causal pathways
between Bob and /etc/passwd. One can derive a bound on possible overt causality
by reasoning only from the current arrangement of permissions. This corresponds to
Bishop and Snyder’s potential de facto analysis, and gives us an arrangement-only
bound on authority. Likewise, if we take some state and behavior into account, we
have a tighter partially behavioral bound on authority.

Systems have many levels of abstraction. At any moment our frame of reference is
a boundary between a base system that imposes rules vs. the subjects hosted on that
base, restricted by those rules. By definition, the operators of a base access control
system can only manipulate permissions. When subjects extend the expressiveness of
a system by abstraction, authority serves as virtual permission. Only by understand-
ing the behavior of an abstraction can we see how it further tightens bounds on au-
thority. As we ascend layers of abstraction, as the extensions of one layer become the
implementation of the next higher, the boundary between permission and authority
shifts accordingly. Permission is relative to a frame of reference. Authority is invari-
ant.

2 The Harrison Ruzzo Ullman paper [Harrison76] is often misunderstood to say this
calculation is never decidable. HRU actually says it is possible (in fact, depressing-
ly easy) to design a set of update rules which are undecidable. At least three
protection systems have been shown to be decidably safe [Jones76, Shapiro00,
Motwani00].

It is unclear whether Saltzer and Schroeder’s Principle of Least Privilege is best
interpreted as least permission or least authority. As we will see, there is an enor-
mous difference between the two.

3. How Much Authority Does “cp” Need?

Consider how the following shell command works:

$ cp foo.txt bar.txt

Here, your shell passes to the cp program the two strings “foo.txt” and
“bar.txt”. By these strings, you mean particular objects (files) in your namespace.
In order for cp to do its job, it must use your namespace, and must be able to read
and write any file you might name that you can read and write. Not only does it oper-
ate with all your authority, it must. Given this ACL-oriented way of using names, its
least authority would still include all of your authority to the file system. So long as
we install and run normal applications in this manner, both security and reliability are
hopeless.

By contrast, consider

$ cat < foo.txt > bar.txt

This shell command brings about the same end effect. Although cat also runs with
all your authority, for this example at least, it does not need to. As with function calls
in any lexically scoped language (even FORTRAN), the names used to designate ar-
guments are evaluated in the caller’s namespace prior to the call (here, by opening
files). The callee gets direct access to the first-class anonymous objects passed in,
and designates them with parameter “names” bound in its own private name space
(here, file descriptor numbers). In this case, the two open files passed in are all the
least authority needed to perform this request. If cat ran as a separate subject with
only these authorities, it could still do its job, and we could more easily reason about
our possible vulnerabilities to its malice or bugs. In our experience of object-capabili-
ty programming, these radical reductions of authority and vulnerability mostly hap-
pen naturally.

4. The Object-Capability Paradigm

In the pure object model of computation [Goldberg76, Hewitt73], there is no distinc-
tion between subjects and objects. A non-primitive object is an encapsulated combi-
nation of code and state, where the state is an addressable and mutable collection of
references to objects. A reference provides access to an object, indivisibly combining
designation of the object, the right to access it, and the means to access it. Depending
on the system, an address may be an instance variable name or index, a memory ad-
dress, or a capability-list index (a c-list index, like a file descriptor number). The
computational system is the dynamic access graph of objects held together by these
references. Within the limits set by the access graph, objects, behaving according to
their code, interact only by sending messages carrying an addressable collection of
arguments (e.g., by argument position), thereby changing the access graph.

Model Term Cap OS Term OO Language Term
object process, domain, page object, closure, instance
code program lambda expression
state address space + c-list

(capability list)
environment,
instance variable frame

address memory address,
c-list index

lexical name,
argument position

The object-capability model of secure computation recognizes the security inher-
ent in the object model. To get from objects to object-capabilities, we need merely
prohibit certain primitive abilities which are not part of the object model anyway, but
which the object model by itself doesn't require us to prohibit (like forged pointers,
direct access to another's private state, mutable static state) [Kahn88, Rees96,
Miller00]. For example, C++, with its ability to cast integers into pointers, is still
within the object model but not the object-capability model.

Whereas the functionality of an object program depends only on the abilities pro-
vided by its underlying system, the security of an object-capability program depends
on underlying inabilities as well. In a graph of mutually suspicious objects, one ob-
ject's correctness depends not only on what the rules of the game say it can do, but
also on what the rules say its potential adversaries cannot do.

4.1. The Object-Capability Model

The following model is an idealization of
various object languages and object-capabili-
ty operating systems. All its powers of ac-
cess control are present in DVH.3

In the initial conditions of Figure 2, Al-
ice's state includes references to Bob and
Carol—Bob and Carol are directly accessi-
ble from Alice.

Alice causes an effect on the world out-
side herself only by sending messages to ob-
jects directly accessible to her (such as Bob),
where she may include, at distinct argument
addresses, references to any objects accessi-
ble to her (such as Carol). A call-return pat-
tern consists of two messages. For example, Alice gains information from Bob by
causing Bob (with a query) to cause her to be informed (with a return).

Bob is affected by the world outside himself only by the arrival of messages sent
by those with access to him. On arrival, the arguments of the message (Carol) also
become accessible to Bob. Within the limits set by these rules, and by what Bob may

3 The object-capability model is essentially the untyped lambda calculus with local
side effects (the model Scheme is based on), where a message send applies an ob-
ject-as-closure to a message-as-argument. This three-way correspondence of
objects, lambda calculus, and capabilities was noticed several times by 1973
[Goldberg76, Hewitt73, Morris73], and investigated explicitly in [Rees96].

Alice

Bob

Carol

foo

Fig 2: Introduction by Message Passing

Alice says:
bob.foo(carol)

feasibly know or compute, Bob’s reaction to an incoming message is only according
to his code (see below). All computation happens only in response to messages.

We distinguish three kinds of primitive objects.
● Immutable data objects, such as the number 3. Access to these are knowledge

limited rather than permission limited. If Alice can figure out which integer she
wants, whether 3 or your private key, she can have it. We refer to immutable
data objects collectively as bits, as they provide only information, no access.
Because data is immutable, we need not distinguish between a reference to data
and the data itself. A reference to non-data is a capability.

● Devices. For purposes of analysis we divide the world into a computational
system containing all objects of potential interest, and an external world. On the
boundary are primitive devices, causally connected to the external world by un-
explained means. A non-device object can only affect the external world by
sending a message to an accessible output device. A non-device object can only
be affected by the external world by receiving a message from an input device
that has access to it.

● Creator. We assume universal access to an object creation service, which any
object can invoke with code and state to create a new object. The creator ac-
cepts only immutable bits as code, or alternatively, it makes a private bits-only
copy for use as the new object’s code. Code uses an address to indicate which
accessible reference to use, or where in its state to store an accessible reference.
The state is a mutable map from addresses to references. The new object is an
instance of its code. The creator returns the only reference to the new object.
(Below, we explain nested lambda evaluation as built from use of the creator.)

By these rules, only connectivity begets connectivity—all access relationships
must derive from previous access relationships. Two disjoint subgraphs cannot be-
come connected as no one can introduce them. Arrangement-based analysis of per-
mission bounds proceeds by graph reachability arguments. Overt causation, carried
only by messages, may flow only along permitted pathways. We may again use
reachability arguments to reason about authority bounds, i.e., overt causality. The
transparency of garbage collection relies on such arguments.

4.2. A Taste of E

E is a simple object-capability language in which objects are closures instantiated by
lambda evaluation. We use only a subset of E providing functionality present in
DVH. This has the semantics of lambda calculus with local side effects, much like
Scheme [Kelsey98], combined with syntactic support for message sending and
method dispatch. Here is a simple data abstraction.

def pointMaker {
 to make(x,y) :any {
 def point {
 to getX() :any { x }
 to getY() :any { y }
 to add(otherPt) :any {
 pointMaker.make(x.add(otherPt.getX()),
 y.add(otherPt.getY()))
} } } }

This defines an object, pointMaker, used to make new points. The keyword “to”
is used to define its single method, make, that, when invoked, defines and returns a
new point. (The “:any” vs. “:void” on a method declares whether it returns a val-
ue.) The code for point uses x and y freely. These are its instance variables, and to-
gether form its state. The state maps from addresses “x” and “y” to the associated
values from point’s creation context. This example defines a polymorphic abstract
data type—points respond to the same add message used to add integers.

Given the universal creator specified above, we could transform the above code to

def pointMaker {
 to make(x,y) :any {
 def point := creator.create(“def point {…}”,
 [“x” => x, “y” => y])
} }

(The expression [“x” => x, “y” => y] builds a map (hashtable) of key =>
value associations.)

Applying this transformation recursively would unnest all lambda expressions.
Nested lambda evaluation better explains instantiation in object languages. The cre-
ator better explains process or domain creation in object-capability OSes. In E, we
almost always use lambda, but we use the creator below to achieve confinement.

4.3. Revocation: Redell’s 1974 Caretaker Pattern

When Alice says bob.foo(carol), she
is giving Bob unconditional, full, and per-
petual access to Carol.4 Given the purpose
of Alice’s message to Bob, such access
may dangerously exceed least authority.
In order to practice POLA, Alice might
need to somehow restrict the rights she
grants to Bob. For example, she might ensure she can revoke access at a later time.
But in a capability system, capabilities themselves are the only representation of per-
mission, and they provide only unconditional, full, perpetual access to the object they
designate.

What is Alice to do? Using a slight simplification of Redell’s Caretaker pattern for
revoking access [Redell74]

4 Object-capability operating systems such as KeyKOS [Hardy85] and EROS
[Shapiro99] implement explicit storage management. In these, access to an object
is universally rescinded whenever an object is destroyed.

Capability systems modeled as un-
forgeable references present the other
extreme, where delegation is trivial,
and revocation is infeasible.

—Chander, Dean, Mitchell
[Chander01]

def caretakerMaker {
 to make(var target) :any {
 def caretaker {
 match [verb, args] {
 E.call(target, verb, args)
 } }
 def revoker {
 to revoke() :void {
 target := null
 } }
 [caretaker, revoker]
} }

Alice instead says

def [carol2, carol2Rvkr] := caretakerMaker.make(carol)
bob.foo(carol2)

The Caretaker just transparently forwards the message to target’s current value.
The Revoker changes what that current value is. Alice can revoke the effect of her
earlier grant to Bob by saying “carol2Rvkr.revoke()”.

Variables in E are final by default. var simply means that target is non-final, it
can be assigned to. Within the scope of target’s definition, make defines two ob-
jects, caretaker and revoker, and returns both of these to its caller in a two ele-
ment list. Alice receives this pair, defines carol2 to be the new Caretaker, and de-
fines carol2Rvkr to be the corresponding Revoker. Both objects use target
freely, so they both share access to the same assignable target variable (which is
therefore a separate object).

What happens when Bob invokes carol2, thinking he’s invoking the kind of
thing Carol is? An object definition contains “to” clauses defining methods and an
optional “match” clause defining a matcher. If an incoming message (x.add(3))
doesn’t match any of the methods, it is given to the matcher. The verb parameter is
bound to the message name (“add”) and the args to the argument list ([3]). This
allows messages to be received generically without prior knowledge of their API
(much like Smalltalk’s doesNotUnderstand: or Java’s Proxy). E.call(…) al-
lows messages to be sent generically (like Smalltalk’s perform: or Java’s “reflec-
tion”).5

The Caretaker itself provides a temporal restriction of authority. Similar patterns
provide other restrictions, such as filtering facets that let only certain messages
through. Even in systems not designed to support access abstraction, many simple
patterns happen naturally. Under Unix, Alice might run a filtering facet as a process
reading a socket Bob can write. The facet process would access Carol using Alice’s
permissions.

4.4. Analysis and Blind Spots

Given Redell’s existence proof in 1974, what are we to make of subsequent argu-
ments that revocation is infeasible in capability systems? Of those who made this im-

5 The simple Caretaker shown here depends on Alice assuming that Carol will not
provide her clients with direct access to herself. See www.erights.org/ elib /capabili -
ty/ deadman.html for a more general treatment of revocation in E.

possibility claim, as far as we are aware, none pointed to a flaw in Redell’s reason-
ing. The key is the difference between permission and authority analysis. ([Chan-
der01] analyzes, in our terms, only permission.) By such an analysis, Bob was never
given permission to access Carol, so there was no access to Carol to be revoked! Bob
was given permission to access carol2, and he still has it. No permissions were re-
voked.

A security officer investigating an incident needs to know who has access to
a compromised object.

—Karger and Herbert [Karger84]

In their paper, Karger and Herbert propose to give a security officer a list of all
subjects who are, in our terms, permitted to access Carol. This list will not include
Bob’s access to Carol, since this indirect access is represented only by the system’s
protection state taken together with the behavior of objects playing by the rules.
Within their system, Alice, by restricting the authority given to Bob as she should,
has inadvertently thwarted the security officer’s ability to get a meaningful answer to
his query.

To render a permission-only analysis useless, a threat model need not include ei-
ther malice or accident; it need only include subjects following security best prac-
tices.

An arrangement-only bound on permission would include the possibility of the
Caretaker giving Bob direct access to Carol—precisely what the Caretaker was con-
structed not to do. Only by reasoning about behaviors can Alice see that the Caretak-
er is a “smart reference”. Just as pointMaker extends our vocabulary of data types,
raising the abstraction level at which we express solutions, so does the Caretaker ex-
tend our vocabulary for expressing access control. Alice (or her programmer) should
use arrangement-only analysis for reasoning about what potential adversaries may
do. But Alice also interacts with many objects, like the Caretaker, because she has
some confidence she understands their actual behavior.

4.5. The Object-Capability Paradigm

The object-capability model does not describe access control as a separate con-
cern, to be bolted on to computation organized by other means. Rather it is a model
of modular computation with no separate access control mechanisms. All its support
for access control is well enough motivated by the pursuit of abstraction and modu-
larity. Parnas’ principle of information hiding [Parnas72] in effect says our abstrac-
tions should hand out information only on a need to know basis. POLA simply adds
that authority should be handed out only on a need to do basis. Modularity and secu-
rity each require both of these principles.

The object-capability paradigm, in the air by 1967 [Wlkes79, Fabry74], and well
established by 1973 [Redell74, Hewitt73, Morris73, Wulf74, Wulf81], adds the ob-
servation that the abstraction mechanisms provided by the base model are not just for
procedural, data, and control abstractions, but also for access abstractions, such as
Redell’s Caretaker.

Access abstraction is pervasive in actual capability practice, including filtering
facets, unprivileged transparent remote messaging systems [Donnelley76, Sansom86,
Doorn96, Miller00], reference monitors [Rajunas89], transfer, escrow, and trade of
exclusive rights [Miller96, Miller00], and recent patterns like the Powerbox [Wagn-
er02, Stiegler02]. Further, every non-security-oriented abstraction that usefully en-
capsulates its internal state provides, in effect, restricted authority to affect that inter-
nal state, as mediated by the logic of the abstraction.

5. Confinement

… a program can create a controlled environment within which another,
possibly untrustworthy program, can be run safely… call the first program
a customer and the second a service. … [the service] may leak, i.e. transmit
… the input data which the customer gives it. … We will call the problem of
constraining a service [from leaking data] the confinement problem.

—Lampson [Lampson73]

Once upon a time, in the days before wireless, you (the customer) could buy a calcu-
lator (the service) from a manufacturer you might not trust. Although you might wor-
ry whether the calculations are correct, you can at least enter your financial data con-
fident that the calculator can’t leak your secrets back to its manufacturer. How did
the calculator solve the confinement problem? By letting you see that no strings were
attached. In a world where the only causation of concern would be carried by wires,
the visible absence of wires emerging from the box—the isolation of the subgraph—
is adequate evidence of confinement. (Wires within the box are of no concern.)

Here, we use this same technique to achieve confinement, substituting capabilities
for wires. The presentation here is a working simplification of confinement in actual
object-capability systems [Hardy86, Shapiro99, Shapiro00, Wagner02, Yee03].

To solve confinement, assume that the manufacturer and customer have mutual
access to a (Factory, factoryMaker) pair created by the following code, and as-
sume that the customer trusts that this pair of objects behaves according to this code.6

{ interface Factory guards FactoryStamp {…}

 def factoryMaker {
 to make(code) :Factory {
 def factory implements FactoryStamp {
 to build(state) :any {
 creator.create(code, state)
 } } } }
 [Factory, factoryMaker]
}

The keywords interface and guards create a pair of objects, Factory and
FactoryStamp, representing a new trademark, similar in purpose to an interface
type. The FactoryStamp is used here to mark instances of the factory definition,
and nothing else, as carrying this trademark. The Factory is used in soft type decla-

6 Given mutual trust in this pair, our same logic solves an important mutual suspi-
cion problem. The manufacturer knows the customer cannot “open the case”—
cannot examine or modify his code.

rations, like “:Factory” above, to ensure that only objects carrying this trademark
may pass. (Although it may not be obvious, such trademarking can be implemented
in DVH and in our model of object-capability computation [Wulf81, Morris73,
Miller87, Rees95, Yee03, Hardy85, Shapiro99].)

Using the factoryMaker, the manufacturer puts his proprietary calculator pro-
gram in an impenetrable shell and sends it to the customer.

def calculatorFactory := factoryMaker.make(“…code…”)
customer.acceptProduct(calculatorFactory)

The customer uses a “:Factory” declaration to ensure that the product she re-
ceives has no external wires. She then uses it to make as many live calculators as she
wants. Each has only that access beyond themselves that the customer provides, so
they can’t even talk to each other unless the customer allows them to, as shown in the
next example. (The customer does not care about access relationships (“wires”) with-
in the calculator—that’s the calculator’s business.)

With lambda evaluation, a new subject’s code and state both come from the same
parent. To solve the confinement problem, we need to combine code (including im-
mutable data) from the manufacturer with state from the customer to give birth to a
new calculator, and to enable the customer to verify that she is the only state-provid-
ing parent. This state is an example of Lampson’s “controlled environment”.7 By par-
ticipating in the instantiation of the calculator, the customer has special knowledge of
what other access rights the calculator does not have. We say the calculator is a con-
trolled subject to her—one born into an environment controlled by her. By contrast,
should the manufacturer introduce the customer to an already instantiated calculation
service, the customer would not be able to tell whether it has strings attached. (Ex-
tending our analogy, suppose the manufacturer offers a calculation service from his
web site.) The calculation service would be an uncontrolled subject to her.

We wish to reiterate that by “confinement” we refer to the overt subset of Lamp-
son's problem, where the customer accepts only code (“a program”) from the manu-
facturer and instantiates it in a controlled environment. The customer creates, in our
terms, a controlled subject, whose authority she confines.

5.1. A Non-Discretionary Model

Our confinement logic depends on the non-discretionary nature of object-capabilities.

“Our discussion … rested on an unstated assumption: the principal that
creates a file or other object in a computer system has unquestioned author-
ity to authorize access to it by other principals. … We may characterize this
control pattern as discretionary.” [emphasis in the original]

—Saltzer and Schroeder [Saltzer75]

7 KeyKOS, EROS, and E provide more flexible support for confinement than we
show here. For example, the manufacturer can also be permitted to supply capabili-
ties that convey transitively read-only authority, to be included in each calculator's
initial state [Shapiro00].

Object-capability systems have no principals. A human user, together with his
shell and “home directory” of references, participates, in effect, as just another sub-
ject. With the substitution of “subject” for “principal”, we will use this classic defini-
tion of “discretionary”.

By this definition, object-capabilities are not discretionary. In our model, in
DVH, and in most actual capability system implementations, even if Alice creates
Carol, Alice may still only authorize Bob to access Carol if Alice has authority to ac-
cess Bob. Without this constraint, our confinement logic would not work.

5.2. The *-Properties

To illustrate the power of confinement, we use it to enforce the *-properties.

Boebert made clear in [[Boebert84]] that an unmodified or classic capabili-
ty system cannot enforce the *-property or solve the confinement problem.
The main pitfall of a classic capability system is that “the right to exercise
access carries with it the right to grant access”.

—Gong [Gong89]

Briefly, the *-properties taken together allow subjects with lower (such as
“secret”) clearance to communicate to subjects with higher (such as “top secret”)
clearance, but prohibit communication in the reverse direction [Bell74]. KeySafe is a
concrete and realistic design for a system providing *-properties, etc., that was to be
implemented on KeyKOS, a pure object-capability system [Rajunas89]. However,
claims that capabilities cannot enforce the *-properties continue [Gong89, Kain87,
Wallach97, Saraswat03], citing [Boebert84] as their support for this claim. Recently,
referring to [Boebert84], Boebert writes:

The paper in question was, and remains, no more than an offhand remark.
… The historical significance of the paper is that it prompted the writing of
[[Kain87]]

—Boebert [Boebert03]

Boebert here defers to Kain and Landwehr’s paper [Kain87]. Regarding object-ca-
pability systems, Kain and Landwehr’s paper makes essentially the same impossibili-
ty claims, which they support only by citing and summarizing Boebert. To lay this
matter to rest, we see no choice but to accept Boebert’s challenge problem.

Here is the method our customer uses to accept the calculator product from the
manufacturer.

to acceptProduct(calcFactory :Factory) :void {
 var diode :int := 0
 def diodeWriter { to write(val :int) :void {diode := val}}
 def diodeReader { to read() :int { diode }}

 def q := calcFactory.build([“writeUp” => diodeWriter])
 def bond := calcFactory.build([“readDown” => diodeReader])
 …
}

Our customer creates two calculators, Q and Bond, that she might consider to have
secret and top secret clearance, respectively. She builds a data diode by defining a
diodeWriter, a diodeReader, and an assignable diode variable they share. She
gives Q and Bond access to each other only through the data diode. An arrangement-
only bound on permissions or authority supports Boebert’s case—the data diode
might introduce Q and Bond. By examining its behavior we see the tighter bounds it
was built to enforce. We see it transmits bits (here, integers) in only one direction and
capabilities in neither. (Q cannot even read what he just wrote!) With these tools, one
can easily implement the *-properties, and prevent Boebert’s attack. The right to ex-
ercise access to the data diode does not carry with it the right to grant access. (See
[Miller03] for further details.)8

By using confinement, our customer can enforce policies, like the *-properties,
that depend on the participants having no external communications channels beyond
those enabled by the customer.

5.3. A Partitioned Model

Our ability to enforce the *-properties de-
pends on the partitioned nature of object-
capabilities.

Above, Q may communicate any bits
he knows to Bond—he may share all his
knowledge with Bond—but he is unable
to share any of his permissions with Bond. In object-capability systems including
DVH, bits and permissions are partitioned. Because Bond and Q cannot create a
causal pathway from Bond to Q, Q is severely limited in his ability to proxy for
Bond, and therefore in his ability to share even his authority with Bond. By contrast,
in a pure password capability system like Amoeba [Tanenbaum86], a capability is
just a bit string—permission is obtained merely by demonstrating knowledge of se-
crets.9 In a pure password capability system, it is indeed impossible to both allow Q
to communicate to Bond while preventing Q from sharing his permissions with
Bond.

5.4. The Arena and Terms of Entry

Policies like the *-properties are generally assumed to govern a computer system as a
whole, to be enforced in collaboration with a human sys-admin or security officer. In
a capability system, this is a matter of initial conditions. If the owner of the system
wishes such a policy to govern the entire system, she can run such code when the
system is first generated, and when new users join. But what happens after the big

8 DVH and many other capability systems provide primitive data-read-only capabili-
ties, enabling them to solve Boebert’s problem only by arranging permissions. By
using abstraction instead, our example presents a pattern that can be adapted to ex-
press more complex policies.

9 By our classification, the Monash system is a semi-partitioned semi-password ca-
pability system [Anderson86].

Since a capability is just a bit string,
it can propagate in many ways with-
out the detection of the kernel or the
server …

—Gong [Gong89]

bang? Let’s say Alice meets Bob, who is an uncontrolled subject to her. Alice can
still enforce “additive” policies on Bob, e.g., she can give him revocable access to
Carol, and then revoke it. But she cannot enforce a policy on Bob that requires re-
moving prior rights from Bob, for that would violate Bob’s security!

Instead, as we see in the example above, acting as Lampson's “customer”, Alice
sets up an arena—Lampson’s “controlled environment”—with initial conditions she
determines, governed by her rules, and over which she is the sys-admin. If her rules
can be enforced on uncontrolled subjects, she can admit Bob onto her arena as a
player. If her rules require the players not to have some rights, she must set terms of
entry. “Please leave your cellphones at the door.” A prospective participant (the man-
ufacturer) provides a player (calcFactory) to represent his interests within the are-
na, where this player can pass the security check at the gate (here, :Factory). No
rights were taken away from anyone; participation was voluntary.

The arena technique corresponds to meta-linguistic abstraction—an arena is a vir-
tual machine built within a virtual machine [Abelson86, Safra86]. The resulting sys-
tem can be described according to either level of abstraction—by the rules of the
base level object-capability system or by the rules of the arena. The subjects built by
the admitted factories are also subjects within the arena. At the base level, we would
say Q has permission to send messages to diodeWriter and authority to send inte-
gers to Bond. At the arena level of description, we would say a data diode is a primi-
tive part of the arena’s protection state, and say Q has permission to send integers to
Bond. Any base level uncontrolled subjects admitted into the arena are devices of the
arena—they have mysterious connections to the arena's external world.

When the only inputs to a problem are bits (here, code), any system capable of
universal computation can solve any solvable problem, so questions of absolute pos-
sibility become useless. Conventional language comparisons face the same dilemma,
and language designers have learned to ask instead an engineering question: Is this a
good machine on which to build other machines? How well did we do on this sup-
posedly impossible example? The code admitted was neither inspected nor trans-
formed. Each arena level subject was also a base level subject. The behavior inter-
posed by the customer between the subjects was very thin. Altogether, we mostly just
reused the security properties of the base level object-capability system to build the
security properties of our new arena level machine.

6. Conclusion

Security in computational systems emerges from the interaction between primitive
protection mechanisms and the behavior of trusted programs. To form a coherent un-
derstanding of access it is therefore necessary to extend our reasoning across the per-
missions/behavior boundary. Because of their restricted function, the required pro-
gram analysis frequently proves tractable for security-enforcing programs, provided
they are built on effective primitives. As we have shown here, such trusted programs
are able to enforce restrictions on more general, untrusted programs by building on
and abstracting more primitive protection mechanisms. To our knowledge, the ob-
ject-capability model is the only protection model whose semantics can be readily
expressed in programming language terms: lambda calculus with side effects. This
provides the necessary common semantic framework for reasoning across the per-
missions/behavior boundary.

By extending our analysis to include the behavior of trusted programs, a critically
missing paradigm for protection—abstraction—is restored to us. The effectiveness of
the object-capability model in this framework is readily apparent. Perhaps more im-
portant, a semantic basis for extensible protection systems is established. We can, if
we like, extend the space of security-enforcing programs to meet the security require-
ments of new object types, new applications, and new requirements—all of which are
outside the scope of what can be described using the traditional access graph.

Analyses based on the evolution of protection state are conservative approxima-
tions. A successful verification demonstrating the enforcement of a policy using only
the protection graph (as in [Shapiro00]) is robust, in the sense that it does not rely on
the cooperative behavior of programs. Verification failures are not robust – they may
indicate a failure in the protection model, but they can also result from what might be
called “failures of conservatism”—failures in which the policy is enforceable but the
verification model has been simplified in a way that prevents successful verification.
As we have shown by illustration here, several of the impossibility proofs concerning
object capability systems may be seen as failures of conservatism.

Just as we should not expect a base programming language to provide us all the
data types we need for computation, we should not expect a base access control sys-
tem to provide us all the elements we need to express our security policies. Both is-
sues deserve the same kind of answer: We use the base to build abstractions, extend-
ing the vocabulary we use to express our solutions. In evaluating a protection model,
one must examine how well it supports the extension of its own expressiveness by
use of abstraction.

In this paper, we have shown by example how object-capability practitioners set
tight bounds on authority by building abstractions and reasoning about their behavior
using conceptual tools similar to that used by object programmers to reason about
any abstraction. We have shown, using only techniques easily implementable in Den-
nis and van Horn's 1966 Supervisor, how actual object-capability systems have used
abstraction to solve problems that subsequent permission-only analyses have
“proven” impossible for capabilities.

The object-capability paradigm, with its pervasive, fine-grained, and extensible
support for the principle of least authority, enables mutually suspicious parties to co-
operate more intimately while being less vulnerable to each other. When more coop-

eration may be practiced with less vulnerability, we may find we have a more coop-
erative world.

7. Acknowledgments

We thank Norm Hardy, Alan Karp, Jonathan Rees, Vijay Saraswat, Terry Stanley,
Marc Stiegler, E. Dean Tribble, Bryce Wilcox-O'Hearn, the e-lang discussion list,
and especially Ka-Ping Yee, our co-author on [Miller03], whose writing had substan-
tial influence on this paper.

8. References

[Abelson86] H. Abelson, G. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, 1986.

[Anderson86] M. Anderson, R. Pose, C. S. Wallace. “A Password Capability Sys-
tem.” The Computer Journal, 29(1), 1986, p. 1–8.

[Bell74] D.E. Bell, L. LaPadula. “Secure Computer Systems.” ESD-TR-83-278,
Mitre Corporation, vI and II (Nov 1973), vIII (Apr 1974).

[Bishop79] M. Bishop, L. Snyder. “The Transfer of Information and Authority in a
Protection System.” SOSP 1979 , p. 45–54.

[Boebert84] W. E. Boebert. “On the Inability of an Unmodified Capability Machine
to Enforce the *-Property.” Proceedings of 7th DoD/NBS Computer Security Con-
ference, September 1984, p. 291–293.
http :// zesty.ca / capmyths / boebert.html

[Boebert03] (Comments on [Miller03])
http://www.eros-os.org/pipermail/cap-talk/2003-March/001133.html

[Chander01] A. Chander, D. Dean, J. C. Mitchell. “A State-Transition Model of
Trust Management and Access Control” Proceedings of the 14th Computer Secu-
rity Foundations Workshop, June 2001, p. 27–43.

[Dennis66] J.B. Dennis, E.C. Van Horn. “Programming Semantics for Multipro-
grammed Computations.” Communications of the ACM, 9(3):143–155, March
1966.
http:// citeseer.nj.nec.com /dennis66programming.html

[Donnelley76] J. E. Donnelley. "A Distributed Capability Computing System." Third
International Conference on Computer Communication, Toronto, Canada, 1976.
http://www.nersc.gov/~jed/papers/DCCS/

[Doorn96] L. van Doorn, M. Abadi, M. Burrows, E. P. Wobber. "Secure Network
Objects." Proceedings of the 1996 IEEE Symposium on Security and Privacy, p.
211–221.
ftp://ftp.digital.com/pub/DEC/SRC/publications/wobber/sno.ps

[Fabry74] R. S. Fabry. “Capability-based addressing.” Communications of the ACM,
17(7), 1974, p. 403–412.

[Goldberg76] A. Goldberg, A. Kay. Smalltalk-72 instruction manual. Technical Re-
port SSL 76-6, Learning Research Group, Xerox Palo, Alto Research Center,
1976.

[Gong89] L. Gong. “A Secure Identity-Based Capability System.” Proceedings of
the 1989 IEEE Symposium on Security and Privacy, p. 56–65.

[Hardy85] N. Hardy. “The KeyKOS Architecture.” ACM Operating Systems Review,
September 1985, p. 8–25.
http:// www.agorics.com /Library/ KeyKos / architecture.html

[Hardy86] N. Hardy. U.S. Patent 4,584,639: Computer Security System,
http://www.cis.upenn.edu/~KeyKOS/Patent/Patent.html

[Harrison76] M.A. Harrison, M.L. Ruzzo, and J.D. Ullman. “Protection in operating
systems.” Communications of the ACM, 19(8) p. 461–471, 1976.

[Hewitt73] C. Hewitt, P. Bishop, R. Stieger. "A Universal Modular Actor Formalism
for Artificial Intelligence." Proceedings of the 1973 International Joint Confer-
ence on Artificial Intelligence, p. 235–246.

[Jones76] A. K. Jones, R. J. Lipton, L. Snyder. “A Linear Time Algorithm for Decid-
ing Security.” FOCS, 1976, p. 33–41.

[Kahn88] K. Kahn, M. S. Miller. "Language Design and Open Systems.", Ecology of
Computation, Bernardo Huberman (ed.), Elsevier Science Publishers, North-Hol-
land, 1988.

[Kain87] R. Y. Kain, C. E. Landwehr. “On Access Checking in Capability-Based
Systems.” IEEE Symposium on Security and Privacy, 1987.

[Karger84] P. A. Karger, A. J. Herbert. "An Augmented Capability Architecture to
Support Lattice Security and Traceability of Access." Proc. of the 1984 IEEE
Symposium on Security and Privacy, p. 2–12.

[Kelsey98] R. Kelsey, (ed.), W. Clinger, (ed.), J. Rees, (ed.), “Revised^5 Report on
the Algorithmic Language Scheme.”ACM Sigplan Notices, 1998.
http://citeseer.nj.nec.com/kelsey98revised.html

[Lampson73] B. W. Lampson, "A Note on the Confinement Problem." CACM on
Operating Systems, 16(10), October, 1973.
http://citeseer.nj.nec.com/lampson73note.html

[Miller87] M. S. Miller, D. G. Bobrow, E. D. Tribble, J. Levy, "Logical Secrets."
Concurrent Prolog: Collected Papers, E. Shapiro (ed.), MIT Press, Cambridge,
MA, 1987.

[Miller96] M. S. Miller, D. Krieger, N. Hardy, C. Hibbert, E. D. Tribble. “An Auto-
matic Auction in ATM Network Bandwidth”. Market-based Control, A Paradigm
for Distributed Resource Allocation, S. H. Clearwater (ed.), World Scientific, Palo
Alto, CA, 1996.

[Miller00] M. S. Miller, C. Morningstar, B. Frantz. "Capability-based Financial In-
struments." Proceedings Financial Cryptography 2000, Springer Verlag.
http://www.erights.org/elib/capability/ode/index.html

[Miller03] M. S. Miller, K. -P. Yee, J. S. Shapiro, "Capability Myths Demolished",
HP Labs Technical Report, in preparation.
http://zesty.ca/capmyths/usenix.pdf

[Morris73] J. H. Morris. "Protection in Programming Languages." CACM 16(1) p.
15–21, 1973.
http://www.erights.org/history/morris73.pdf.

[Motwani00] R. Motwani, R. Panigrahy, V. Saraswat, S. Venkatasubramanian. “On
the Decidability of Accessibility Problems.” AT&T Labs – Research.
http://www.research.att.com/~suresh/Papers/java.pdf

[Neumann80] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, L. Robinson.
A Provably Secure Operating System: The System, Its Applications, and Proofs,
CSL-116, Computer Science Laboratory, SRI International, Inc., May 1980.

[Parnas72] D. Parnas. "On the Criteria To Be Used in Decomposing Systems into
Modules." CACM 15(12), December 1972.
http://www.acm.org/classics/may96/.

[Rajunas89] S. A. Rajunas. "The KeyKOS/KeySAFE System Design." Key Logic,
Inc., SEC009-01, March, 1989.
http://www.cis.upenn.edu/~KeyKOS/agorics/KeyKos/keysafe/Keysafe.html

[Redell74] D. D. Redell. Naming and Protection in Extendible Operating Systems.
Project MAC TR-140, MIT, November 1974. (Ph. D. thesis.)

[Rees96] J. Rees, A Security Kernel Based on the Lambda-Calculus. MIT AI Memo
No. 1564. MIT, Cambridge, MA, 1996.
http://mumble.net/jar/pubs/secureos/

[Safra86] M. Safra, E. Y. Shapiro. Meta Interpreters for Real. Information Process-
ing86, H. -J. Kugler (ed.), North-Holland, Amsterdam, p. 271–278, 1986.

[Saltzer75] J. H. Saltzer, M. D. Schroeder. “The Protection of Information in Com-
puter Systems.” Proceedings of the IEEE 63(9), September 1975, p. 1278–1308.
http://www.cap-lore.com/CapTheory/ProtInf/

[Sansom86] R. D. Sansom, D. P. Julian, R. Rashid. "Extending a Capability Based
System Into a Network Environment." Research sponsored by DOD, 1986, p.
265–274.

[Saraswat03] V. Saraswat, R. Jagadeesan. “Static support for capability-based pro-
gramming in Java.”
http://www.cse.psu.edu/~saraswat/neighborhood.pdf

[Shapiro99] J. S. Shapiro, J. M. Smith, D. J. Farber. “EROS: A Fast Capability Sys-
tem.” Proceedings of the 17th ACM Symposium on Operating Systems Principles,
December 1999, p. 170–185.

[Shapiro00] J. S. Shapiro, S. Weber. “Verifying the EROS Confinement Mecha-
nism.” Proceedings of the 2000 IEEE Symposium on Security and Privacy, p.
166–176.

[Sitaker00] K. Sitaker. Thoughts on Capability Security on the Web.
http:// lists.canonical.org / pipermail / kragen - tol /2000-August/000619.html

[Stiegler02] M. Stiegler, M. Miller. “A Capability Based Client: The DarpaBrowser.”

http://www.combex.com/papers/darpa-report/index.html
[Tanenbaum86] A. S. Tanenbaum, S. J. Mullender, R. van Renesse. “Using Sparse

Capabilities in a Distributed Operating System.” Proceedings of 6th International
Conference on Distributed Computing Systems, 1986, p. 558–563.
ftp :// ftp.cs.vu.nl /pub/papers/amoeba/dcs86.ps.Z

[Wagner02] D. Wagner, D. Tribble. A Security Analysis of the Combex DarpaBrows-
er Architecture.
http://www.combex.com/papers/darpa-review/index.html

[Wallach97] D. S. Wallach, D. Balfanz, D. Dean, E. W. Felten. “Extensible Security
Architectures for Java.” Proceedings of the 16th Symposium on Operating Sys-
tems Principles, 1997, p. 116–128.
http:// www.cs.princeton.edu /sip/pub/sosp97.html

[Wilkes79] M. V. Wilkes, R. M. Needham. The Cambridge \mbox{CAP} Computer
and its Operating System. Elsevier North Holland, 1979.

[Wulf74] William A. Wulf, Ellis S. Cohen, William M. Corwin, Anita K. Jones, Roy
Levin, C. Pierson, and Fred J. Pollack. “HYDRA: The Kernel of a Multiprocessor
Operating System.” Communications of the ACM, 17(6):337-345, 1974

[Wulf81] W. A. Wulf, R. Levin, S. P. Harbison.HYDRA/C.mmp: An Experimental
Computer System, McGraw Hill, 1981.

[Yee03] K.-P. Yee, M. S. Miller. Auditors: An Extensible, Dynamic Code Verifica-
tion Mechanism.
http:// www.erights.org / elang /kernel/auditors/ index.html

