

Capability Myths Demolished

Mark S. Miller

Combex, Inc.
markm@caplet.com

Ka-Ping Yee
University of California, Berkeley

ping@zesty.ca

Jonathan Shapiro
Johns Hopkins University

shap@cs.jhu.edu

ABSTRACT
We address three common misconceptions about
capability-based systems: the Equivalence Myth (access
control list systems and capability systems are formally
equivalent), the Confinement Myth (capability systems
cannot enforce confinement), and the Irrevocability
Myth (capability-based access cannot be revoked). The
Equivalence Myth obscures the benefits of capabilities
as compared to access control lists, while the Confine-
ment Myth and the Irrevocability Myth lead people to
see problems with capabilities that do not actually exist.

The prevalence of these myths is due to differing inter-
pretations of the capability security model. To clear up
the confusion, we examine three different models that
have been used to describe capabilities, and define a set
of seven security properties that capture the distinctions
among them. Our analysis in terms of these properties
shows that pure capability systems have significant
advantages over access control list systems: capabilities
provide much better support for least-privilege
operation and for avoiding confused deputy problems.

INTRODUCTION
This paper is concerned with three misconceptions
about capability systems that we believe to be
prominent among students, researchers, and prac-
titioners of computer security. Over the course of
history, these three myths seem to have achieved the
status of common wisdom (we do not assume anyone
believes all three simultaneously):

• The Equivalence Myth: Access control list (ACL)
systems and capability systems are formally
equivalent.

• The Confinement Myth: Capability systems cannot
enforce confinement.

• The Irrevocability Myth: Capability-based access
cannot be revoked.

The first myth obscures important benefits of capability
systems, and is based on the common perception1 of
ACL systems and capability systems as merely alter-
native perspectives on Lampson’s access matrix [15].

The second and third myths state false limitations on
what capability systems can do, and have been
propagated by a series of research publications over the
past 20 years (including [2, 3, 7, 24]). They have been
cited as reasons to avoid adopting capability models
and have even motivated some researchers to augment
capability systems with extra access checks [7, 13] in
attempts to fix problems that do not exist. The myths
about what capability systems cannot do continue to
spread, despite formal results [22] and practical
systems [1, 9, 18, 21] demonstrating that they can do
these supposedly impossible things.

We believe these severe misunderstandings are rooted
in the fact that the term capability has come to be
portrayed in terms of several very different security
models. This paper describes three common inter-
pretations, which we call Model 2: Capabilities as
Rows, Model 3: Capabilities as Keys, and Model 4:
Object Capabilities. We compare these to Model 1:
ACLs as Columns.

We will begin by addressing the three myths directly.
The Equivalence Myth is based on a comparison of the
ACLs-as-columns and capabilities-as-rows models; we
will refute this myth by explaining why the comparison
it makes is not meaningful and pointing out specific
differences between ACL and capability systems in
practice. The other two myths concern what is feasible
in a capability system; we examine them in the context
of the object-capability model, which represents the
vast majority of implemented “capability-based” or
“pure capability” systems.

We will then examine and compare the three different
interpretations of capabilities in more detail, to clear up
the confusion among them. In particular, we will
identify distinctions between the models in terms of
some important security properties, and trace how these

1 To support the claim that this perception is common, David

Wagner has kindly agreed to go on record as having believed that
ACL systems and capability systems were roughly equivalent in
expressiveness, until convinced otherwise by one of the authors.

interpretations have made the capability myths appear
to be reasonable or even obvious statements. Along the
way, we will find that these properties not only dispel
the myths, but in fact afford capability-based systems
with significant advantages that are crucial for secure
operation. We will conclude with a discussion of these
advantages with respect to the principle of least
privilege [20] and the confused deputy problem [10].

TERMINOLOGY
In order to discuss all of these models together, we
need to adopt some consistent terminology. For the
following discussion, we will use the word authority to
mean the ability of a subject to access a resource. Note
in particular that although sometimes the word object is
used to mean “a thing to which an authority provides
access”, we instead use the word resource. We reserve
the word object to mean an encapsulation of state and
behaviour, as in object-oriented programming.

Figure 1. Graphical conventions used in this paper to
depict access.

THE EQUIVALENCE MYTH
Our first myth is the common belief that ACLs and
capabilities are formally equivalent. This usually stems
from being introduced to ACLs and capabilities as
different views on an access matrix.

The access matrix visualization of authority
relationships, described by Lampson [15], is a table
indexed by subjects and resources. The cells of the
matrix contain access attributes that specify the kinds
of access each subject has to each resource. For
example, consider a simple system with three subjects,
three resources, and the permission settings shown in
Figure 2.

 /etc/passwd /u/markm/foo /etc/motd

Alice {read} {write} {}

Bob {read} {} {read}

Carol {read} {write} {read}

Figure 2. Example of an access matrix.

For each resource, the corresponding column lists all
the kinds of access any subjects have to that resource.
An ACL system associates each resource with an access
control list, which represents a column of this matrix.
This organization of the access matrix is our Model 1:
ACLs as Columns.

For each subject, the corresponding row lists all the
kinds of access available to that subject. A capability
system associates each subject with a list of capabilities
(or C-list), which represents a row of this matrix. This
row-based view is our Model 2: Capabilities as Rows.

Thus, ACLs and C-lists appear to represent the same
information, differing only in whether the information
is recorded in a by-column or by-row data structure. If
the access matrix constitutes the entire story, then these
two models would seem equivalent.

However, such a line of reasoning ignores a crucial
factor: the difference between static models and
dynamic systems.

Model is Not Dynamic
The access matrix is not usually assumed to include a
precise specification of the rules that condition how the
cells of the matrix may be updated. Although
Lampson’s presentation of the access matrix [15]
actually did suggest a set of such rules, the lasting
legacy of this model – what most everyone remembers
and teaches to one generation after another – is the
matrix itself as a static representation of access rights.
In practice, what most people consider the definition of
“ACL system” does not specifically impose Lampson’s
rules, or any canonical set of rules.2

Subtle changes in these rules for authority manipulation
can have far-reaching effects on the security properties
of the entire model. When the matrix is seen only as a
static depiction of security state, the access matrix
model becomes more general, which can be an
advantage for some modelling purposes. However, no
description of any security mechanism is complete
without a specification of how access relationships are
allowed to evolve over time. Thus, comparing ACL
and capability models in terms of the static access
matrix alone is insufficient to establish logical
equivalence.

In short, the access matrix is indeed general enough to
accommodate both types of security models, but that
does not necessarily make them equivalent.

2 Many ACL systems share some features with Lampson’s rule set,

such as an owner attribute. However, once such rules are taken
into account, it is no longer possible to claim that ACL systems
and capability systems are equivalent, because they use different
update rules.

A Shift in Perspective
Switching from a column-based to a row-based
organization of the access matrix results in at least three
real differences between the models. Visualizing the
access matrix in another way will help make these
differences apparent.

Figure 3 depicts the ACL-as-columns model, this time
explicitly identifying the access control lists. The
circles on the left are subjects, and the boxes on the far
right are resources. Each access control list is shown as
a tall oval next to its corresponding resource. When
access control lists are stored with the resources, they
must contain references to subjects, which are shown as
the leftward-pointing arrows.

Now let us compare this to Figure 4, a depiction of the
capabilities-as-rows model in the same style. Here,
each subject on the left carries a C-list containing
capabilities. Each capability has a reference to a
resource, which we depict as a rightward-pointing
arrow.

By shifting to this new visualization, where the
references are explicitly visible, we see a difference
between the models that was previously obscured: the
direction of the arrows. To see why this matters, let us
consider how subjects and resources refer to each other.

Designation and Authority
First, let us look at the arrows from the subject side.
The ACL model presumes some namespace, such as the
space of filenames, that subjects use to designate

resources. This namespace must necessarily be separate
from the representation of authority in an ACL system,
since the arrows representing authorities point in the
opposite direction. Looking only at the matrix without
considering the direction of the arrows assumes away
the designation problem, which is arguably one of the
deepest problems in computer security. In order to use
a resource designator, subjects must not only come to
know the designator in some fashion; they must also
understand their relationship to the designated resource
in order to determine what actions they should perform
on the resource.

In a capability system, each capability points from a
subject to a resource. Consequently every capability
can serve both to designate which resource to access,
and to provide the authority to perform that access.
This change provides us with the option to avoid
introducing a shared namespace into the foundations of
the model, and thereby avoid the complex issues
involved in managing a shared namespace – issues
rarely acknowledged as a cost of non-capability
models.

We will refer to this distinction as Property A: No
Designation Without Authority. As we have explained,
no ACL system can possibly have this property,
whereas a system described by the row-based view of
the access matrix may or may not have this property.
This property will be relevant to the issue of confused
deputy problems [10], which we will discuss later in
this paper.

Figure 3. The ACLs-as-columns model, with
references drawn as arrows.

Figure 4. The capabilities-as-rows model, with
references drawn as arrows.

Granularity of Subjects
Now, we will consider the arrows from the resource
side. Another consequence of the direction of the
arrows in the ACL model is that the ACLs also need a
namespace in which to refer to subjects. In order for
the ACL model to be coherent, the entities that update
ACLs must maintain up-to-date knowledge of the set of
subjects and their designations. Maintaining such
consistency is difficult if subjects are frequently
appearing and disappearing.3 The frequency with
which the set of subjects changes depends on the level
of granularity at which subjects are distinguished.

Although Lampson’s definition of the access matrix
does not prohibit the possibility of fine-grained
subjects4, even in an ACL system, the difficulty just
explained strongly motivates ACL systems to define
subjects at a coarse granularity so as to keep the set of
subjects relatively static. Thus, ACL systems in
practice map processes to principals (broad
equivalence classes of processes), such as user
accounts5, where the set of principals does not change
in the course of normal operation. These principals
then serve as the subjects of the access matrix.
Subjects in an ACL system do not generally6 have the
ability to create an unbounded number of new subjects.
The appeal of the ACL model rests on the ability of
administrators to enumerate subjects whose identities
they can know and reason about, such as humans.

In capability systems, a subject corresponds to an
instance of a software component, such as an object (an
instance of a class, as in a capability language) or
a process (an instance of an executable program, as
in a capability operating system). Instances are
distinguished at a much finer granularity than user
accounts – indeed, at finer granularity than users are
normally even aware of. Because authorities are

3 This situation is especially problematic if the design of the ACL

system presumes that ACLs will typically be edited by humans.
4 In fact, Lampson’s presentation [15] explicitly suggested that

domains (what we mean by subjects here) could be processes,
whereupon access control lists would contain access keys to
identify the domains. However, most implementations of access
control lists contain subject names rather than access keys, which
makes it hard for them to identify a dynamic, unbounded set of
subjects. Lampson touches on the difficulty of handling fine-
grained subjects in ACL systems when he writes “the procedure
gets the domain's name as argument, and this cannot be forged.
However, unique names may not be very convenient for the
procedure to remember – access is more likely to be associated
with a person or group of people, or perhaps with a program.”

5 Sometimes user accounts are created so that authorities can be
specified separately for particular programs, but that is not the
same as specifying authorities separately for each individual
running instance of a program.

6 Usually, only an administrator can create new principals.

aggregated by subject, it is no problem for subjects to
be defined at a fine granularity, even when that means
subjects are creating new subjects all the time.

We will refer to this distinction as Property B:
Dynamic Subject Creation. Strictly speaking, neither
view of the access matrix imposes or prohibits this
property, but we know of no ACL implementation that
allows individual processes to be separate subjects,
whereas all capability-based systems distinguish
subjects at the instance level. The loss of subject
granularity is a severe limitation on the expressiveness
of ACL systems. This issue will bear on our later
discussion of the principle of least privilege [20].

Power to Edit Authorities
Though policies for updating authorities vary from
system to system, all ACL systems known to us define
an owner or edit permissions attribute, which is set on a
resource to give a subject the power to edit that
resource’s ACL. Consequently the power to edit
authorities is aggregated by resource: the ability to
change one permission generally comes together with
the ability to edit an entire ACL. In capability systems,
the power to edit authorities is aggregated by subject:
subjects manipulate authorities in their own C-lists.

We will refer to this distinction as Property C: Subject-
Aggregated Authority Management. As with Property
B, the access matrix model does not force the presence
or absence of this property, but in all cases of which we
are aware, capability systems have this property and
ACL systems do not.

Intermission
All of these differences between the capabilities-as-
rows model and the ACLs-as-columns model should
put to rest the Equivalence Myth. Object-capability
systems are different from ACL systems in yet more
ways, which will surface as we address the other myths.

THE CONFINEMENT MYTH
We come now to the Confinement Myth, which is
sometimes stated as “capability systems cannot limit
the propagation of authority” or “capability systems
cannot solve the confinement problem”. For example:

A major problem for capability systems is a
fundamental inability to solve the confine-
ment problem,

— Karger [13, p. 67]

This view continues to be held as recently as 2001:

Delegation in a trust management style of
access control provides for bounds on prop-
agation of access rights, a property which
doesn’t hold true for capabilities.

... Trust management, modelled here without
keys or name spaces, can strongly (one-to-
one) simulate the other mechanisms,
providing a tractable compromise between
unrestricted capability passing from the
capability model and easy revocation
provided by access control lists.

— Chander, Dean, Mitchell [3]

Achieving Confinement
In order to explain the problems with this claim, we
need to describe how authority is transferred in most
capability systems in practice, where capabilities are
object references [6]. We refer to this as Model 4.
Object Capabilities (Model 3 is described below). The
transfer of authority in these systems is depicted in
Figure 5.

Figure 5. Delegation in object capability systems [8, 4].

In this diagram, Alice, a subject possessing a capability
to Carol, is delegating this capability to another subject,
Bob. The open arrow on the left represents an
invocation or message. The message is riding on a
capability from Alice to Bob, since messages may only
travel along capabilities in an object-capability system.

In order for Alice to authorize Bob to access Carol,
Alice must herself be authorized to access both Bob
and Carol. The requirement for both capabilities makes
confinement possible, since no capability transfer can
introduce a new connection between two objects that
were not already connected by some path.
Confinement of authorities within a set of objects can
be determined simply by observing that the subgraph
containing the set of objects is not connected to the rest
of the object graph.

Suppose, for example, we decide not to trust Bob. To
prevent Alice from delegating to Bob, we simply
refrain from giving Alice access to Bob. No subgraph
of co-operating objects can delegate to Bob if Bob is

not reachable from that subgraph to begin with. This
simple insight is the basis for many capability-based
confinement systems [9, 21, 25, 26].

Karger noted in 1988 that KeyKOS did, in fact, achieve
confinement:

KeyKOS achieves confinement by a
mechanism called factories. Essentially, a
factory is a mechanism for creating new
instances of protected subsystems.

— Karger [13, p. 75]

The discussion of KeyKOS goes on to compare its
performance to that of another capability system, noting
that occasionally KeyKOS requires two calls and
returns instead of one. Regardless of the benchmarks,
however, the fact remains that confinement is indeed
achievable in a capability system.

It is unfortunate that the Confinement Myth continues
to scare people away from capabilities so long after
KeyKOS succeeded in confining programs. The myth
was further amplified by an influential and widely cited
paper on extensible security architectures for Java:

However, an important issue is confinement
of privileges [26]. It should not generally be
possible for one program to delegate a
privilege to another program (that right
should also be mediated by the system). This
is the fundamental flaw in an unmodified
capability system; two programs which can
communicate object references can share
their capabilities without system mediation.
This means that any code which is granted a
capability must be trusted to care for it
properly. In a mobile code system, the
number of such trusted programs is
unbounded. Thus, it may be impossible to
ever trust a simple capability system.

— Wallach, Balfanz, Dean, Felten [24]

Note that the above makes a slightly different error
with respect to the confinement issue. Rather than
stating that capability passing is unrestricted, it
correctly acknowledges that the ability to communicate
object references is necessary for two programs to
share their capabilities. However, it appears to
overlook the possibility that such an ability to
communicate might be unavailable or restricted.

We will examine some possible reasons for the
persistence of the delegation myth in more detail
below, but let us first address the third myth before
entering into that discussion.

THE IRREVOCABILITY MYTH
The third myth states that capabilities cannot revoke
access. This is also quite widely believed, for example:

Capability systems modelled as unforgeable
references present the other extreme, where
delegation is trivial, and revocation is
infeasible.

— Chander, Dean, Mitchell [3]

This belief stems from the fact that, once a subject
holds a capability, no one but the subject can remove
that capability, not even the creator of the corres-
ponding resource. It is true that capabilities themselves
are not literally revocable. Further, we know that the
capability alone is sufficient to establish access to the
resource. These two facts might lead one to reasonably
believe that there is no opportunity to revoke access.

Revocable Access in Object-Capability Systems
In an object-capability system, however, capabilities
can be composed in such a way as to provide revocable
access. Suppose once again that Alice wants to give
Bob access to Carol, but Alice also wants to have the
option to revoke this access at some time in the future.
To accomplish this, Alice could simply create a pair of
forwarders, F and R, connected as shown in Figure 6.
Of this pair, we may call F the forwarding facet, and R
the revoking facet. Alice would send Bob access to F,
and retain R for herself. Any messages sent to F get
forwarded through R to Carol, so Bob may use F as if it
were Carol. This works as long as inter-object
interactions are mediated by messages, and messages
are handled generically, so that a reusable mechanism
can forward any message.

Figure 6. Alice provides Bob with revocable access to
Carol.

When Alice wants to revoke Bob’s access to Carol, she
invokes R, telling it to stop forwarding. R then drops
its pointer to Carol, and F becomes useless to Bob.

Notice that no capabilities were themselves revoked,
which is the truth supporting the myth. Bob still has
access to F. However, access to F is now useless.
Alice hasn’t revoked Bob’s capability itself, but she has
revoked the access to Carol represented by that
capability.

This revocation mechanism also works for delegated
authorities. Suppose Bob delegates to Ted his access to
Carol. Since Bob only ever has access to F, not to
Carol herself, Bob can only give F to Ted (and Bob can
only do so if Bob also has access to Ted). When Alice
invokes R in order to disable F, this action prevents
further access to Carol by Ted, or by anyone to whom
Bob sent his capability, just as much as it prevents
access by Bob.

This scheme is not a recent invention. Redell described
exactly this method for revoking access in 1974 [18],
and it was later implemented in the CAP-III system
[12]. Karger addresses the concern that “indirection
through a large number of revoker capabilities could
adversely affect system performance” by suggesting
that “a properly designed translation buffer, however,
could cache the result of the capability indirections and
make most references go quickly” [13, p. 111].
KeyKOS [9] and EROS [21] both employ this
optimization technique.

ORIGINS OF THE MYTHS
Now we will examine the history of the last two myths,
in order to understand the thinking that led to them.

An Argument Against Confinement
Our story begins in 1984, when Boebert presented a
claim [2] that no unmodified capability machine can
enforce the *-Property (explained below). His paper
defined an unmodified capability machine as one in
which “capabilities are the sole mechanism for
controlling access by programs to storage objects”, and
defined a capability as a distinguished object
containing two parts: a reference to a storage object and
an access mode such as read or write. His argument has
been cited as evidence that capability systems cannot
solve the confinement problem, for example:

Boebert made clear in [1] that an
unmodified or classic capability system can
not enforce the *-property or solve the
confinement problem. The main pitfall of a
classic capability system is that “the right to
exercise access carries with it the right to
grant access”.

— Gong [7]

(Gong’s citation [1] is Boebert’s 1984 paper, which
corresponds to our citation [2]).

Because Boebert’s argument [2] had such tremendous
influence on later research, we will pay special
attention to it here. The argument concerns the problem
of enforcing two rules called the Simple Security
Property and the *-Property. The rules suppose a
world in which subjects are assigned clearance levels
(representing the trustworthiness of each subject) and
resources are assigned classification levels
(representing the sensitivity of the information they
contain). The Simple Security Property requires that
subjects have read access only to resources classified at
or below their clearance level. The *-Property requires
that subjects have write access only to resources
classified at or above their clearance level. Together,
these two rules confine information at higher
classification levels and prevent it from escaping to
lower levels.

Boebert’s example consists of a capability system with
two levels, where there is a subject (Alice) and a
memory segment (Low) at the lower level, and a
subject (Bob) and a memory segment (High) at the
upper level. The two confinement rules are
implemented by an oracle that grants capabilities of the
appropriate modes to anyone requesting access, based
on its special knowledge of the clearance of the subject
and the classification of the object. The oracle grants
read capabilities whenever the object’s classification is
at the same level or lower than the subject’s clearance.
The oracle grants write capabilities whenever the
object’s classification is at the same level or higher than
the subject’s clearance.

To make the argument easier to illustrate, we will
depict subjects as carrying all the capabilities that such
an oracle would have granted them. Figure 7 shows the
starting condition corresponding to the oracle Boebert
described.

In the attack that Boebert describes, Alice takes her
Write-Low capability and writes it into the Low
segment, as in Figure 8.

Then, Bob can read this capability out of the Low
segment, as in Figure 9.

At this point, Bob can violate the *-Property by reading
sensitive information out of the High segment and using
his newly-acquired write capability to leak the
information into the Low segment.

Boebert concludes correctly that the particular use of
capabilities he described does not enforce the
*-Property. However, the argument assumes that
subjects can transmit capabilities anywhere they can
transmit data, which is not the case in most capability
systems.

Figure 7. Initial condition for Boebert’s attack.

Figure 8. Alice writes her Write-Low capability into the
Low segment.

Figure 9. The Write-Low capability now resides in the
Low segment, which Bob can read.

In partitioned or type-enforced capability systems such
as KeyKOS [9], W7 [19], EROS [21], or E [4],
capabilities and data are distinguished by the kernel or
runtime. Reading and writing capabilities are
necessarily distinguishable operations from reading and
writing data. Nearly all capability systems make this
distinction.

Suppose now that each of the two classification levels
has separate read capabilities for capabilities and data,
and separate write capabilities for capabilities and data.
The oracle now hands out capabilities of both kinds,
much as before, with the exception that it does not hand
out capabilities that permit reading or writing
capabilities between different levels.

Figure 10. Enforcement of the *-Property in a pure
capability system.

If we show each subject holding all the capabilities that
it could possibly obtain from the oracle, we now have
Figure 10.

Since no capability-carrying capabilities cross between
levels, no capabilities can cross between levels. The
only capability Bob holds to a lower level is a read
capability, so the *-Property is enforced. The only
capability Alice holds to a higher level is a write
capability, so the Simple Security Property is enforced.

The result is an unmodified capability system
(satisfying Boebert’s own definition) that is perfectly
capable of enforcing both the Simple Security Property
and the *-Property.

The claim that capability systems in general cannot
enforce the *-Property appears to be based on the
misunderstanding that capabilities and data are not
distinguishable. A similar misunderstanding is the
belief that capabilities are equivalent to bit strings:

Since a capability is just a bit string, it can
propagate in many ways without the
detection of the kernel or the server....

Generally a capability is a bit string and
can propagate in many ways without
detection...

— Gong [7]

The equivalence of capabilities and bit strings is a
feature only present in a specialized category of
capability systems known as password capability
systems, such as Amoeba [17]. Boebert’s result is valid
in any capability system that cannot distinguish
between data transfer and capability transfer. But
partitioned and type-enforced capability systems do not
have this problem, and password capability systems
have been engineered to avoid this problem [1, 11].
Moreover, it has been formally verified that any
capability system enforcing independent controls on
data transfer and capability transfer can enforce both
confinement and the *-Property [22].

The Capabilities-as-Keys Model
Sometimes capabilities are explained using the analogy
that capabilities are like copyable, unforgeable keys (or
copyable, unforgeable tickets) in the real world. This
analogy is our Model 3. Capabilities as Keys. It turns
out that the Confinement Myth and the Irrevocability
Myth are both true statements within such a model, so
we believe this model is a likely contributor to the
propagation of these myths. Let us take apart the key
analogy carefully to see how it compares with the
object-capability model.

As the story goes, each resource is protected by a lock,
perhaps a locked door. People carry keys on their key
rings, and if they want to delegate authority, they can
make copies of their keys to give to other people. The
analogy usually assumes that they can give copies of
their keys to anyone they like. To exercise an
authority, a person must make two choices: a choice of
key, and a choice of lock. The access attempt succeeds
or fails depending on whether these choices put
together a compatible key and lock.

As with object-capability systems, the keys are assumed
to be unforgeable. The only way someone can get a
key to a resource is either by being its creator, or if
someone else who already has the key decides to give
them a copy of the key. Subjects are also assumed to
be encapsulated: if someone does not voluntarily
decide to hand out a copy of a key, no one can steal it.

Note that one can hold a key without knowing the door
to which it belongs, and one can also designate a door
without holding the key that opens it. The analogy
does not usually specify whether one chooses a
particular key to use before seeking the appropriate
door, or whether, upon encountering a locked door, one
then tries all the keys on the key ring to find a key that
works. This decision will be pertinent to the discussion
of the confused deputy problem, below.

We will now compare this model to the other two
capability-like models we have discussed.

Keys versus Rows: Ambient Authority
There is a crucial difference between the capabilities-
as-keys model and the capabilities-as-rows model. In
the key model, exercising an authority requires the
selection of a key, but the capabilities-as-rows model
has no such requirement.

We will use the term ambient authority to describe
authority that is exercised, but not selected, by its user.
In an ambient authority system, subjects are not
required to indicate a specific authority in order to
exercise it. The corresponding analogy is to imagine a
world with doors but without keys. When a person
walks up to a door, the door magically opens if it

deems the person worthy. For example, Unix
filesystem permissions constitute an ambient authority
mechanism, because the caller of a function such as
open() does not choose any credentials to present with
the request; the request merely succeeds or fails.

We will refer to the requirement that subjects select the
authorities they exercise as Property D: No Ambient
Authority. This distinction will also be relevant in our
later discussion of the confused deputy problem.

Keys versus Objects
Although the capabilities-as-keys analogy is an
appealing way to tell stories about capabilities, it is not
an accurate representation of the object-capability
model. In Figure 11, which represents the capabilities-
as-keys model, the ability to read /etc/motd is behind
a locked door. To read it, Alice must request access to
/etc/motd for reading and present the key that
unlocks the door. The diagram shows that Alice
possesses such a key, represented by the thin black
arrow pointing from Alice to the resource.

The wide arrow on the left represents a message from
Alice to Bob, in which Alice sends Bob a copy of her
key. Once Bob receives it, he will be able to read
/etc/motd as well. By giving Bob a copy of her key,
Alice authorizes Bob to read /etc/motd. The wide
arrow containing the black arrow tail represents this act
of authorization.

In the capabilities-as-keys model, subjects authorize
subjects (the wide arrow on the left), whereas subjects
access resources (the wide arrow carrying the operation
name read), and these are two distinct kinds of action.
As long as subjects and resources are partitioned into
two separate type categories, authorization and access
cannot be unified because the types of these two
operators do not match.

Now compare Figure 11 to Figure 12, which illustrates
authorization and access in the object-capability model.
Three things are different.

First, the resource box has been replaced by a circle
labelled Carol, to depict the fact that there is no
artificial separation between subjects and resources.
Every subject is a resource, and every resource is
conceptually a subject (though some resources, such as
the number 3, are primitively provided). Consequently,
access and authorization can be unified. This
uniformity makes the object-capability model
compositional; networks of authority relationships can
be composed to any depth. We will refer to this
property as Property E: Composability of Authorities.

Second, the message from Alice to Bob is now riding
on a capability from Alice to Bob. In the capabilities-
as-keys model this access is not necessary (Alice can
give her keys to anyone), but in the object-capability
model such access is a prerequisite for delegation. We
will refer to this requirement as Property F: Access-
Controlled Delegation Channels.

Third, the message from Alice to Bob is labelled with
an operation, print. (We imagine that Bob might be a
printer, and Alice is asking Bob to print information
from Carol.) Since authorization is just a form of
access in this model, authorizations are conveyed in the
context of a request. This will be relevant to our later
discussion of the confused deputy problem.

Observe that without Property E, we cannot construct
revocable forwarders to solve the revocation problem.
And it is precisely the restriction of Property F that
enables confinement. So, it is easy to see how staying
within the capabilities-as-keys model could lead one to
believe both the Irrevocability Myth and the
Confinement Myth.

Figure 11. Authorization and access in the
capabilities-as-keys model.

Figure 12. Authorization and access in the object-
capability model.

SUMMARY OF THE FOUR MODELS
We have now described four different security models
and identified several properties that distinguish them.
These are summarized in Figure 13.

Chander et al. have presented and compared three of
these models [3], which they identified as Macl, MCrow,
and MCref. They call Macl “access control lists”, which
corresponds to our Model 1, and call MCrow either
“Lampson matrix capabilities” or “capabilities as
rows”, which corresponds to our Model 2. They
describe MCref alternately as “capabilities as
unforgeable bit strings”, “capabilities as tickets”, or
“capabilities as references”, but MCref actually
corresponds to our Model 3, since their definition of
the Pass operation allows subjects to pass their
capabilities without restriction (that is to say, MCref
lacks Property F). Model 4 (capabilities as object
references), which describes most of the capability
systems in practice, is missing from their analysis.

SYSTEMS IN PRACTICE
For comparison, we will now look at some examples of
security mechanisms in practice to see how they
measure up against these properties.

Unix and NT Filesystems
Representative real-world systems that fit the ACLs-as-
columns model include the standard Unix filesystem,
Unix with a setfacl() extension, and the NT ACL
system. All three of these mechanisms lack all six of
Properties A through F.

POSIX Capabilities
The “POSIX capabilities” mechanism described in
POSIX 1003.1e might seem to be a representative
system for capabilities-as-rows, since authorities are
indeed aggregated at the subject. Indeed, with respect
to all of the six properties we have defined so far, the
“POSIX capabilities” mechanism fits the capabilities-
as-rows model. However, there is one very important
difference: the set of resources (POSIX capability
flags) is finite and fixed.

At the level of detail that we typically care about
(individual files, programs, and so on) resources are
created and destroyed all the time. There is a bounded
set of POSIX capability flags only because they do not
express authorities at this level of detail. For example,
one of the POSIX capability flags is CAP_CHOWN,
which represents the power to change the ownership of
any file on the entire system. Just as with the subject
granularity issue, we can consider this a granularity
issue with respect to resources, where the ability to
dynamically create new resources is the clear dividing
line between “fine-grained” and “coarse-grained”.

We will refer to this new distinction as Property G:
Dynamic Resource Creation. All of the other models
and examples mentioned here have this property, but
the “POSIX capabilities” mechanism does not.

POSIX capability flags can be transmitted to a new
process when it is created, but the ability to start new
processes requires access to executable files. Such
access depends on file permissions rather than POSIX
capabilities, and is also affected by the view of the

Property Test Model 1.
ACLs as
columns

Model 2.
capabilities

as rows

Model 3.
capabilities

as keys

Model 4.
object

capabilities

A. No Designation
Without Authority

Does designating a resource always convey its
corresponding authority?

no
(impossible)

unspecified
(possible)

no yes

B. Dynamic Subject
Creation

Can subjects dynamically create new subjects? no
(in practice)

yes
(in practice)

yes yes

C. Subject-Aggregated
Authority Management

Is the power to edit authorities aggregated by subject? no
(in practice)

yes
(in practice)

yes yes

D. No Ambient Authority Must subjects select which authority to use when
performing an access?

no no yes yes

E. Composability of
Authorities

Are resources also subjects? unspecified unspecified no yes

F. Access-Controlled
Delegation Channels

Is an access relationship between two subjects X and Y
required in order for X to pass an authority to Y?

unspecified unspecified no yes

Figure 13. Comparison of the four security models. Model 1 represents ACLs in practice and approximately as
commonly understood. Model 4 represents all the major capability systems in practice, in which capabilities are
object references. Models 2 and 3 represent two different ways in which capabilities are sometimes explained:
according to a naive static view of Lampson’s access matrix (“capabilities as rows”), and according to the metaphor
that capabilities are like unforgeable physical keys in the real world (“capabilities as keys”).

filesystem (which a call to chroot() may have
altered). Thus, with respect to Property F: Delegation
on Access-Controlled Channels, delegation can be
somewhat limited, but the complexity of Unix
filesystem access makes the question of confinement
unclear.

SPKI
SPKI [5] is a reasonable real-world representative for
the capabilities-as-keys model. In SPKI, an authority is
a signed certificate carried by a subject. The certificate
specifies the resource and the kind of access, and the
existence of a valid signature on the certificate conveys
the authorization.

Authorities (certificates) are always bound to resource
designators (names) in SPKI, because resource
designators are embedded in the signed certificates. If
the certificate is altered to break this binding, the
signature becomes invalid. However, designators are
not always bound to authorities. The designators are S-
expressions that describe a path to the resource, and do
not in themselves convey any authority.

Just as with the key analogy, authority in SPKI is not
ambient: a subject must choose and present a certificate
as part of an attempt to access any resource. Also as
with the key analogy, propagation of SPKI certificates
is unrestricted; the holder of a certificate may give a
copy of that certificate to any other party.

Nothing prevents the construction of entities that can
both accept and hold SPKI certificates, so, strictly
speaking, authorities are composable in this scheme.
However, we have not heard of this kind of indirection
being done in practice; it is not clear whether such a use
of SPKI could be made practical.

Unix File Descriptors
File descriptors in Unix are nearly, but not quite,
equivalent to object capabilities. Since they are
sometimes cited as an examples of capabilities, it is
useful to compare them to the models we have
discussed. Although files themselves cannot wield other
file descriptors, a file descriptor could designate a pipe
to another process that wields file descriptors. So file
descriptors are composable as long as they are limited
to the functionality of a pipe (e.g. pipes do not support
random access). File descriptors differ from object
capabilities in that the channel for transmitting file
descriptors among processes (a Unix socket) is
controlled by an ACL, not by a capability-like
mechanism. Thus, while the file descriptor mechanism
is similar to object capabilities in some ways, confining
the propagation of file descriptors depends on the
details of the ACL system.

Pure Capability Systems
A large number of capability systems in the history of
security research have all seven of the security
properties we have mentioned, and thus fit Model 4.
These systems include Dennis and Van Horn’s
Supervisor, CAL-TSS, CAP, and Hydra (all described
in Levy’s survey of capability systems [16]), KeyKOS
[9], W7 [19], Mungi [11], EROS [21], and E [4], as
well as the password capability system by Anderson,
Pose, and Wallace [1].

ADVANTAGES OF OBJECT-CAPABILITY SYSTEMS
Least-Privilege Operation
An essential design requirement for secure systems is
the principle of least privilege [20]: every entity should
operate using the minimal set of privileges necessary to
complete its task. In terms of authority relationships
between subjects and resources, we can look at this
principle from two perspectives. Operating in least-
privilege fashion demands that we provide access to
minimal resources, and that we grant such access to
minimal subjects.

In the course of comparing security models and systems
so far, we have already encountered both granularity
issues. Property B: Dynamic Subject Creation is
necessary for limiting authority when starting new
running instances of software components. In order for
subjects to be able to create instances with limited
authority, each instance must have its own separate set
of authorities, and must therefore be a distinct subject.
For example, Property B allows a user to invoke a
program while granting it only the subset of the user’s
authority that it needs to carry out its proper duties.
Property G: Dynamic Resource Creation is necessary
in order for the model to be able to express access
restrictions on objects (such as individual files) that can
be created and destroyed. No security model limited to
controlling a static set of resources can possibly have
sufficient expressive detail to support least-privilege
operation on a dynamic system.

So both Property B and Property G are necessary
(though not sufficient) for least-privilege operation.
The three capability-like models offer both of these
properties, whereas the ACL model is missing Property
B. The POSIX capabilities mechanism bears a weak
resemblance to capability models but lacks Property G,
so it cannot (on its own) support least-privilege
operation.

Avoiding Confused Deputy Problems
A deputy is a program that must manage authorities
coming from multiple sources. A confused deputy [10]
is a deputy that has been manipulated into wielding its
authority inappropriately. A frequent challenge in

computer security is to construct deputies that cannot
be confused. Confused deputy problems are a common
class of security incidents in many systems, including
the World-Wide Web [23].

The classic story of the confused deputy [10] concerns
a compiler in an ambient authority system.7 The
compiler is granted write access to a file called BILL in
order to store billing information. Upon invoking the
compiler, the user can specify the name of a file to
receive debugging output. If the user specifies BILL as
the name of the debugging file, the compiler is fooled
into overwriting the billing information with debugging
information.

The problem is not caused by the compiler using access
that it should not have. The problem is that it exercises
its authority to write to BILL for the wrong purpose.

While no security model can prevent people from
writing bad programs, certain properties of the security
model can have a profound effect on our likelihood of
writing reliable programs. Let us consider the confused
deputy problem with respect to two properties we have
identified: Property D: No Ambient Authority and
Property A: No Designation Without Authority.

Ambient Authority
The question of ambient authority determines whether
subjects can identify the authorities they are using. If
subjects cannot identify the authorities they are using,
then they cannot associate with each authority the
purpose for which it is to be used. Without such
knowledge, a subject cannot safely use an authority on
another party’s behalf.

Suppose that we return to the compiler story with this
property in mind. If the authority to write to BILL were
not ambient, then the compiler could hold one key to
BILL for the purpose of writing billing information,
and accept another key from the user for the purpose of
writing debugging information. Then, as long as the
compiler uses each key for its intended purpose, the
confused deputy problem cannot occur. The lack of
distinguishable keys would prevent the compiler from
having any way to draw this distinction.

Eliminating ambient authority helps make it possible to
avoid confused deputies, but doesn’t guarantee that
deputies will never be confused. We mentioned earlier
that it matters whether one chooses a key to use before
attempting to open a door, or whether one goes to a

7 Actually, the story we tell here is a simplified version of the

original. In the original story, the compiler is given write access to
a directory containing the billing file for the purpose of writing a
different file. With respect to the confused deputy problem, the
point is the same.

door and then tries all available keys to find one that
works. Even if one can distinguish the keys, deciding
to try all available keys puts one at risk of becoming a
confused deputy.

In order to avoid the confused deputy problem, a
subject must be careful to maintain the association
between each authority and its intended purpose. Using
the key analogy, one could imagine immediately
attaching a label to each key upon receiving it, where
the label describes the purpose for which the key is to
be used. In order to know the purpose for a key, the
subject must understand the context in which the key is
received; for example, labelling is not possible if keys
magically appear on the key ring without the subject’s
knowledge.

Separable Designators
We mentioned earlier that designating resources is a
tricky problem when designators are separated from
authorities. When designators and authorities take
separate paths through a system, their recombination is
likely to lead to confused deputies.

Looking again at the scenario of the compiler as
confused deputy, we see that an authorization given by
one party is used to access a resource designated by a
different party, bringing about an unintended transfer of
authority. In ACL systems, because designation and
authorization are necessarily separated, this confusion
is difficult to escape. In a system where designation
and authority are inseparable, this common type of
confused deputy problem – in which a malicious party
designates a resource they are not supposed to access –
simply cannot occur.

In addition, if resource designations can never be
separated from authorities, any request asking the
deputy to access a resource necessarily includes the
corresponding authorities, and places those authorities
in the context of the request. This helps to provide the
aforementioned context that a deputy needs in order to
determine the proper purpose for each received
authority.

Any request for access to a resource must designate the
resource in some way. If designators are inseparable
from authorities, any request for access must
necessarily include the authority, which means that any
subject requesting access always chooses the authority
to exercise. So the presence of Property A implies the
presence of Property D.

 Figure 14 summarizes the arguments regarding the
confused deputy issue in this section.

Figure 14. Design factors related to confused deputies.

Object-capability systems possess both Property A and
Property D, so they enforce the combination of
designation with authority, enable the assignment of
local identifiers to authorities, and encourage the
presence of context when authorities are conveyed. All
three of these things contribute to establishing a chain
of designation, running from the original creator of a
resource, through the entity that exercises the resource,
and finally to the resource itself. Maintaining this

unbroken chain of designation greatly improves our
ability to reason about the behaviour of trusted
programs.

SPKI is an interesting case to analyze in these terms.
Each certificate comes with an embedded nonlocal
resource designator in cleartext, so designators can be
separated from authorities. However, the construction
of unconfusable deputies can still be feasible so long as
(a) certificates arrive in the context of a request (in
particular, an undamaged request) and (b) subjects
maintain local identifiers for the certificates they hold.
SPKI does not specifically provide for a certificate or
tuple of certificates to be securely bound together with
a message so that the receiver can determine the
intended purpose for the conveyed authorities. Such a
feature would be necessary to enable (a).

SUMMARY OF SYSTEMS AND PROPERTIES
The table in Figure 15 summarizes all of the models
and systems we have mentioned, evaluating them in
terms of the seven security properties, the two model-
specific myths, and the issues of confused deputies and
least-privilege operation. The columns are arranged
roughly along a spectrum from ACLs to capabilities.

Property Model 1.
ACLs as
columns

Unix fs,
setfacl(),

NT ACLs

Model 2.
capabilities

as rows

POSIX
capabilities

Model 3.
capabilities

as keys

SPKI Unix file
descriptors

Model 4.
object

capabilities

CAP, Hydra,
KeyKOS, W7,
EROS, E, etc.

A. No Designation
Without Authority

no
(impossible)

no unspecified
(possible)

no no no yes yes yes

B. Dynamic Subject
Creation

no
(in practice)

no yes
(in practice)

yes yes yes yes yes yes

C. Subject-Aggregated
Authority Management

no
(in practice)

no yes
(in practice)

yes yes yes yes yes yes

D. No Ambient Authority

no no no no yes yes yes yes yes

E. Composability of
Authorities

unspecified no unspecified no no possible,
but unusual

yes,
as pipes

yes yes

F. Access-Controlled
Delegation Channels

unspecified no unspecified yes,
but by ACL

no no yes,
but by ACL

yes yes

G. Dynamic Resource
Creation

yes yes yes no yes yes yes yes yes

Consequence

Irrevocability Myth
(holds if B but not E)

false false true true true false depends false false

Delegation Myth
(holds if B but not F)

false false true unclear true true unclear false false

Confused Deputy (hope-
less without D, best if A)

danger danger danger danger better better best best best

Least Privilege
(requires B and G)

infeasible infeasible better infeasible better better better better better

Figure 15. Comparison of various systems and models with respect to the seven security properties.

A NOTE ON THE WORD “CAPABILITY”
Given these various interpretations of the capability
model, the reader may wonder what one should adopt
as the most legitimate meaning for the term capability.
We should also explain why we feel justified in
declaring the Irrevocability Myth and Confinement
Myth to be false, rather than merely false in certain
cases. We would argue that the “true” capability model
is the object-capability model, because all known major
capability systems take the object-based approach (for
examples, see [1, 4, 9, 11, 16, 17, 19, 21]). In all of
these systems, a capability is an object reference – not
something that behaves like a key or ticket in the real
world. Definitive books on capability-based systems
[6, 16] also describe these systems from the object-
capability perspective, and explicitly characterize them
as “object-based”.

We know of no security mechanisms outside of the
object-capability model that have described themselves
using the word capability except for “POSIX
capabilities”, “Netscape capabilities”, and “split
capabilities” [14]. POSIX capabilities are not generally
described as “capability-based security”. The
“Netscape capabilities” extensions to Java were fairly
short-lived and have not been presented in the research
literature as a capability system. Moreover, both
“POSIX capabilities” and “Netscape capabilities” have
never been presented as security mechanisms that can
stand on their own, instead only serving as an extension
to existing security systems. The split capabilities
model is explicitly presented in contrast to the pure
capability model [14].

CONCLUSION
We have described a progression of four security
models from traditional ACLs to pure capabilities,
while defining a set of seven properties that can be used
to distinguish the models. We have also used the
properties to evaluate and compare some real-world
security systems that resemble the models.

The distinctions that we have drawn support our refu-
tations of three common misconceptions concerning
capability-based systems – the Equivalence Myth, the
Confinement Myth, and the Irrevocability Myth.
Although the myths have some truth in the intermediate
security models that are often taken as interpretations
of capabilities, they do not hold for the “pure
capability” or “object-capability” model represented by
the vast majority of capability systems. Furthermore,
the properties we identified show that capability
systems lack certain fatal flaws of ACL systems –
namely, the susceptibility of ACLs to the confused
deputy problems that are inherent in ambient authority
systems, and the inability of ACLs to perform least-

privilege delegation to new processes. Capability-
based systems provide much stronger support for the
precise, minimal, and meaningful delegation of
authority, which is fundamental to secure operation.

ACKNOWLEDGEMENTS
Many thanks to Darius Bacon, Sue Butler, Tyler Close,
Hal Finney, Bill Frantz, Norm Hardy, Chris Hibbert,
Alan Karp, Ben Laurie, Terry Stanley, Marc Stiegler,
E. Dean Tribble, Bill Tulloh, and Zooko for their
detailed comments and assistance with this paper.

REFERENCES
1. M. Anderson, R. Pose, C. S. Wallace. A Password

Capability System. The Computer Journal, 29(1), 1986,
p. 1–8.

2. W. E. Boebert. On the Inability of an Unmodified
Capability Machine to Enforce the *-Property.
Proceedings of 7th DoD/NBS Computer Security
Conference, September 1984, p. 291–293. Online at:
http://zesty.ca/capmyths/boebert.html

3. A. Chander, D. Dean, J. C. Mitchell. Proceedings of the
14th Computer Security Foundations Workshop, June
2001, p. 27–43.

4. The E Language: Open Source Distributed Capabilities.
http://erights.org/.

5. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
T. Ylonen. SPKI Certificate Theory. IETF RFC 2693.
Online at: http://www.ietf.org/rfc/rfc2693.txt

6. E. F. Gehringer. Capability Architectures and Small
Objects. UMI Press, 1982.

7. L. Gong. A Secure Identity-Based Capability System.
Proceedings of the 1989 IEEE Symposium on Security
and Privacy, p. 56–65.

8. M. Granovetter. The Strength of Weak Ties. American
Journal of Sociology 78, 1973, p. 1360–1380.

9. N. Hardy. The KeyKOS Architecture. ACM Operating
Systems Review, September 1985, p. 8–25. Online at:
http://www.agorics.com/Library/KeyKos/architecture.html

10. N. Hardy. The Confused Deputy (or why capabilities
might have been invented). Operating Systems Review
22(4), October 1988, p. 36–38.

11. G. Heiser, K. Elphinstone, S. Russel, J. Vochteloo.
Mungi: A Distributed Single Address-Space Operating
System. Proceedings of the 17th Australasian Computer
Science Conference, p. 271–280.

12. A. J. Herbert. A Microprogrammed Operating System
Kernel. Ph. D. thesis, University of Cambridge Computer
Laboratory, September 1982.

13. P. Karger. Improving Security and Performance for
Capability Systems. Technical Report 149, University of
Cambridge Computer Laboratory, 1988. (Ph. D. thesis.)

14. A. H. Karp, R. Gupta, G. J. Rozas, A. Banerji. Using
Split Capabilities for Access Control. IEEE Software
20(1), January 2003, p. 42–49.

15. B. Lampson. Protection. Proceedings of the 5th Annual
Princeton Conference on Information Sciences and
Systems, 1971, p. 437–443.

16. H. Levy. Capability-Based Computer Systems. Digital
Press, Bedford, Massachusetts, 1984. Online at:
http://www.cs.washington.edu/homes/levy/capabook/

17. A. S. Tanenbaum, S. J. Mullender, R. van Renesse. Using
Sparse Capabilities in a Distributed Operating System.
Proceedings of 6th International Conference on Dis-
tributed Computing Systems, 1986, p. 558–563. Online
at: ftp://ftp.cs.vu.nl/pub/papers/amoeba/dcs86.ps.Z

18. D. D. Redell. Naming and Protection in Extendible
Operating Systems. Project MAC TR-140, MIT,
November 1974. (Ph. D. thesis.)

19. J. Rees. A Security Kernel Based on the Lambda-
Calculus. Technical Report AIM-1564, MIT, March
1996. (Ph. D. thesis.)

20. J. H. Saltzer, M. D. Schroeder. The Protection of
Information in Computer Systems. Proceedings of the
IEEE 63(9), September 1975, p. 1278–1308.

21. J. S. Shapiro, J. M. Smith, D. J. Farber. EROS: A Fast
Capability System. Proceedings of the 17th ACM
Symposium on Operating Systems Principles, December
1999, p. 170–185.

22. J. S. Shapiro, S. Weber. Verifying the EROS Confine-
ment Mechanism. Proceedings of the 2000 IEEE
Symposium on Security and Privacy, p. 166–176.

23. K. Sitaker. Thoughts on Capability Security on the Web.
Online at: http://lists.canonical.org/pipermail/kragen-tol/
2000-August/000619.html

24. D. S. Wallach, D. Balfanz, D. Dean, E. W. Felten.
Extensible Security Architectures for Java. In
Proceedings of the 16th Symposium on Operating
Systems Principles, 1997, p. 116–128. Online at:
http://www.cs.princeton.edu/sip/pub/sosp97.html

25. D. Wagner, D. Tribble. A Security Analysis of the
Combex DarpaBrowser Architecture. Online at:
http://www.combex.com/papers/darpa-review/

26. K.-P. Yee, M. S. Miller. Auditors: An Extensible,
Dynamic Code Verification Mechanism. Online at:
http://www.erights.org/elang/kernel/auditors/index.html

