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ABSTRACT 
We address three common misconceptions about 
capability-based systems: the Equivalence Myth (access 
control list systems and capability systems are formally 
equivalent), the Confinement Myth (capability systems 
cannot enforce confinement), and the Irrevocability 
Myth (capability-based access cannot be revoked).  The 
Equivalence Myth obscures the benefits of capabilities 
as compared to access control lists, while the Confine-
ment Myth and the Irrevocability Myth lead people to 
see problems with capabilities that do not actually exist. 

The prevalence of these myths is due to differing inter-
pretations of the capability security model.  To clear up 
the confusion, we examine three different models that 
have been used to describe capabilities, and define a set 
of seven security properties that capture the distinctions 
among them.  Our analysis in terms of these properties 
shows that pure capability systems have significant 
advantages over access control list systems: capabilities 
provide much better support for least-privilege 
operation and for avoiding confused deputy problems.  

INTRODUCTION 
This paper is concerned with three misconceptions 
about capability systems that we believe to be 
prominent among students, researchers, and prac-
titioners of computer security.  Over the course of 
history, these three myths seem to have achieved the 
status of common wisdom (we do not assume anyone 
believes all three simultaneously):  

• The Equivalence Myth: Access control list (ACL) 
systems and capability systems are formally 
equivalent.  

• The Confinement Myth: Capability systems cannot 
enforce confinement.  

• The Irrevocability Myth: Capability-based access 
cannot be revoked.  

The first myth obscures important benefits of capability 
systems, and is based on the common perception1 of 
ACL systems and capability systems as merely alter-
native perspectives on Lampson’s access matrix [15].  

The second and third myths state false limitations on 
what capability systems can do, and have been 
propagated by a series of research publications over the 
past 20 years (including [2, 3, 7, 24]).  They have been 
cited as reasons to avoid adopting capability models 
and have even motivated some researchers to augment 
capability systems with extra access checks [7, 13] in 
attempts to fix problems that do not exist.  The myths 
about what capability systems cannot do continue to 
spread, despite formal results [22] and practical 
systems [1, 9, 18, 21] demonstrating that they can do 
these supposedly impossible things.  

We believe these severe misunderstandings are rooted 
in the fact that the term capability has come to be 
portrayed in terms of several very different security 
models.  This paper describes three common inter-
pretations, which we call Model 2: Capabilities as 
Rows, Model 3: Capabilities as Keys, and Model 4: 
Object Capabilities.  We compare these to Model 1: 
ACLs as Columns.  

We will begin by addressing the three myths directly. 
The Equivalence Myth is based on a comparison of the 
ACLs-as-columns and capabilities-as-rows models; we 
will refute this myth by explaining why the comparison 
it makes is not meaningful and pointing out specific 
differences between ACL and capability systems in 
practice.  The other two myths concern what is feasible 
in a capability system; we examine them in the context 
of the object-capability model, which represents the 
vast majority of implemented “capability-based” or 
“pure capability” systems.  

We will then examine and compare the three different 
interpretations of capabilities in more detail, to clear up 
the confusion among them.  In particular, we will 
identify distinctions between the models in terms of 
some important security properties, and trace how these 

                                                           
1  To support the claim that this perception is common, David 

Wagner has kindly agreed to go on record as having believed that 
ACL systems and capability systems were roughly equivalent in 
expressiveness, until convinced otherwise by one of the authors. 



interpretations have made the capability myths appear 
to be reasonable or even obvious statements.  Along the 
way, we will find that these properties not only dispel 
the myths, but in fact afford capability-based systems 
with significant advantages that are crucial for secure 
operation.  We will conclude with a discussion of these 
advantages with respect to the principle of least 
privilege [20] and the confused deputy problem [10].  

TERMINOLOGY 
In order to discuss all of these models together, we 
need to adopt some consistent terminology.  For the 
following discussion, we will use the word authority to 
mean the ability of a subject to access a resource.  Note 
in particular that although sometimes the word object is 
used to mean “a thing to which an authority provides 
access”, we instead use the word resource.  We reserve 
the word object to mean an encapsulation of state and 
behaviour, as in object-oriented programming.  

 

 

Figure 1.  Graphical conventions used in this paper to 
depict access. 

THE EQUIVALENCE MYTH 
Our first myth is the common belief that ACLs and 
capabilities are formally equivalent.  This usually stems 
from being introduced to ACLs and capabilities as 
different views on an access matrix.  

The access matrix visualization of authority 
relationships, described by Lampson [15], is a table 
indexed by subjects and resources.  The cells of the 
matrix contain access attributes that specify the kinds 
of access each subject has to each resource.  For 
example, consider a simple system with three subjects, 
three resources, and the permission settings shown in 
Figure 2.  

 /etc/passwd /u/markm/foo /etc/motd 

Alice {read} {write} {} 

Bob {read} {} {read} 

Carol {read} {write} {read} 

Figure 2. Example of an access matrix.  

For each resource, the corresponding column lists all 
the kinds of access any subjects have to that resource.  
An ACL system associates each resource with an access 
control list, which represents a column of this matrix.  
This organization of the access matrix is our Model 1: 
ACLs as Columns.  

For each subject, the corresponding row lists all the 
kinds of access available to that subject.  A capability 
system associates each subject with a list of capabilities 
(or C-list), which represents a row of this matrix.  This 
row-based view is our Model 2: Capabilities as Rows.  

Thus, ACLs and C-lists appear to represent the same 
information, differing only in whether the information 
is recorded in a by-column or by-row data structure.  If 
the access matrix constitutes the entire story, then these 
two models would seem equivalent.  

However, such a line of reasoning ignores a crucial 
factor: the difference between static models and 
dynamic systems.  

Model is Not Dynamic 
The access matrix is not usually assumed to include a 
precise specification of the rules that condition how the 
cells of the matrix may be updated.  Although 
Lampson’s presentation of the access matrix [15] 
actually did suggest a set of such rules, the lasting 
legacy of this model – what most everyone remembers 
and teaches to one generation after another – is the 
matrix itself as a static representation of access rights.  
In practice, what most people consider the definition of 
“ACL system” does not specifically impose Lampson’s 
rules, or any canonical set of rules.2  

Subtle changes in these rules for authority manipulation 
can have far-reaching effects on the security properties 
of the entire model.  When the matrix is seen only as a 
static depiction of security state, the access matrix 
model becomes more general, which can be an 
advantage for some modelling purposes.  However, no 
description of any security mechanism is complete 
without a specification of how access relationships are 
allowed to evolve over time.  Thus, comparing ACL 
and capability models in terms of the static access 
matrix alone is insufficient to establish logical 
equivalence.  

In short, the access matrix is indeed general enough to 
accommodate both types of security models, but that 
does not necessarily make them equivalent.  
                                                           
2  Many ACL systems share some features with Lampson’s rule set, 

such as an owner attribute.  However, once such rules are taken 
into account, it is no longer possible to claim that ACL systems 
and capability systems are equivalent, because they use different 
update rules.   



A Shift in Perspective 
Switching from a column-based to a row-based 
organization of the access matrix results in at least three 
real differences between the models.  Visualizing the 
access matrix in another way will help make these 
differences apparent.  

Figure 3 depicts the ACL-as-columns model, this time 
explicitly identifying the access control lists. The 
circles on the left are subjects, and the boxes on the far 
right are resources.  Each access control list is shown as 
a tall oval next to its corresponding resource. When 
access control lists are stored with the resources, they 
must contain references to subjects, which are shown as 
the leftward-pointing arrows.  

Now let us compare this to Figure 4, a depiction of the 
capabilities-as-rows model in the same style.  Here, 
each subject on the left carries a C-list containing 
capabilities. Each capability has a reference to a 
resource, which we depict as a rightward-pointing 
arrow.  

By shifting to this new visualization, where the 
references are explicitly visible, we see a difference 
between the models that was previously obscured: the 
direction of the arrows.  To see why this matters, let us 
consider how subjects and resources refer to each other.  

Designation and Authority 
First, let us look at the arrows from the subject side. 
The ACL model presumes some namespace, such as the 
space of filenames, that subjects use to designate 

resources. This namespace must necessarily be separate 
from the representation of authority in an ACL system, 
since the arrows representing authorities point in the 
opposite direction.  Looking only at the matrix without 
considering the direction of the arrows assumes away 
the designation problem, which is arguably one of the 
deepest problems in computer security.  In order to use 
a resource designator, subjects must not only come to 
know the designator in some fashion; they must also 
understand their relationship to the designated resource 
in order to determine what actions they should perform 
on the resource.  

In a capability system, each capability points from a 
subject to a resource.  Consequently every capability 
can serve both to designate which resource to access, 
and to provide the authority to perform that access.  
This change provides us with the option to avoid 
introducing a shared namespace into the foundations of 
the model, and thereby avoid the complex issues 
involved in managing a shared namespace – issues 
rarely acknowledged as a cost of non-capability 
models.  

We will refer to this distinction as Property A: No 
Designation Without Authority.  As we have explained, 
no ACL system can possibly have this property, 
whereas a system described by the row-based view of 
the access matrix may or may not have this property.  
This property will be relevant to the issue of confused 
deputy problems [10], which we will discuss later in 
this paper.  

Figure 3. The ACLs-as-columns model, with 
references drawn as arrows. 

Figure 4. The capabilities-as-rows model, with 
references drawn as arrows. 



Granularity of Subjects 
Now, we will consider the arrows from the resource 
side.  Another consequence of the direction of the 
arrows in the ACL model is that the ACLs also need a 
namespace in which to refer to subjects.  In order for 
the ACL model to be coherent, the entities that update 
ACLs must maintain up-to-date knowledge of the set of 
subjects and their designations. Maintaining such 
consistency is difficult if subjects are frequently 
appearing and disappearing.3  The frequency with 
which the set of subjects changes depends on the level 
of granularity at which subjects are distinguished.  

Although Lampson’s definition of the access matrix 
does not prohibit the possibility of fine-grained 
subjects4, even in an ACL system, the difficulty just 
explained strongly motivates ACL systems to define 
subjects at a coarse granularity so as to keep the set of 
subjects relatively static.  Thus, ACL systems in 
practice map processes to principals (broad 
equivalence classes of processes), such as user 
accounts5, where the set of principals does not change 
in the course of normal operation.  These principals 
then serve as the subjects of the access matrix.  
Subjects in an ACL system do not generally6 have the 
ability to create an unbounded number of new subjects.  
The appeal of the ACL model rests on the ability of 
administrators to enumerate subjects whose identities 
they can know and reason about, such as humans.  

In capability systems, a subject corresponds to an 
instance of a software component, such as an object (an 
instance of a class, as in a capability language) or         
a process (an instance of an executable program, as     
in a capability operating system).  Instances are 
distinguished at a much finer granularity than user 
accounts – indeed, at finer granularity than users are 
normally even aware of.  Because authorities are 

                                                           
3  This situation is especially problematic if the design of the ACL 

system presumes that ACLs will typically be edited by humans.   
4  In fact, Lampson’s presentation [15] explicitly suggested that 

domains (what we mean by subjects here) could be processes, 
whereupon access control lists would contain access keys to 
identify the domains.  However, most implementations of access 
control lists contain subject names rather than access keys, which 
makes it hard for them to identify a dynamic, unbounded set of 
subjects.  Lampson touches on the difficulty of handling fine-
grained subjects in ACL systems when he writes “the procedure 
gets the domain's name as argument, and this cannot be forged.  
However, unique names may not be very convenient for the 
procedure to remember – access is more likely to be associated 
with a person or group of people, or perhaps with a program.”   

5  Sometimes user accounts are created so that authorities can be 
specified separately for particular programs, but that is not the 
same as specifying authorities separately for each individual 
running instance of a program.   

6  Usually, only an administrator can create new principals.   

aggregated by subject, it is no problem for subjects to 
be defined at a fine granularity, even when that means 
subjects are creating new subjects all the time.  

We will refer to this distinction as Property B: 
Dynamic Subject Creation.  Strictly speaking, neither 
view of the access matrix imposes or prohibits this 
property, but we know of no ACL implementation that 
allows individual processes to be separate subjects, 
whereas all capability-based systems distinguish 
subjects at the instance level.  The loss of subject 
granularity is a severe limitation on the expressiveness 
of ACL systems.  This issue will bear on our later 
discussion of the principle of least privilege [20].  

Power to Edit Authorities 
Though policies for updating authorities vary from 
system to system, all ACL systems known to us define 
an owner or edit permissions attribute, which is set on a 
resource to give a subject the power to edit that 
resource’s ACL.  Consequently the power to edit 
authorities is aggregated by resource: the ability to 
change one permission generally comes together with 
the ability to edit an entire ACL.  In capability systems, 
the power to edit authorities is aggregated by subject: 
subjects manipulate authorities in their own C-lists.  

We will refer to this distinction as Property C: Subject-
Aggregated Authority Management.  As with Property 
B, the access matrix model does not force the presence 
or absence of this property, but in all cases of which we 
are aware, capability systems have this property and 
ACL systems do not.  

Intermission 
All of these differences between the capabilities-as-
rows model and the ACLs-as-columns model should 
put to rest the Equivalence Myth.  Object-capability 
systems are different from ACL systems in yet more 
ways, which will surface as we address the other myths.  

THE CONFINEMENT MYTH 
We come now to the Confinement Myth, which is 
sometimes stated as “capability systems cannot limit 
the propagation of authority” or “capability systems 
cannot solve the confinement problem”.  For example:  

A major problem for capability systems is a 
fundamental inability to solve the confine-
ment problem, ....  

— Karger [13, p. 67]  

This view continues to be held as recently as 2001:  

Delegation in a trust management style of 
access control provides for bounds on prop-
agation of access rights, a property which 
doesn’t hold true for capabilities.  



... Trust management, modelled here without 
keys or name spaces, can strongly (one-to-
one) simulate the other mechanisms, 
providing a tractable compromise between 
unrestricted capability passing from the 
capability model and easy revocation 
provided by access control lists.  

— Chander, Dean, Mitchell [3]  

Achieving Confinement 
In order to explain the problems with this claim, we 
need to describe how authority is transferred in most 
capability systems in practice, where capabilities are 
object references [6].  We refer to this as Model 4. 
Object Capabilities (Model 3 is described below). The 
transfer of authority in these systems is depicted in 
Figure 5.  

 

Figure 5. Delegation in object capability systems [8, 4].  

In this diagram, Alice, a subject possessing a capability 
to Carol, is delegating this capability to another subject, 
Bob.  The open arrow on the left represents an 
invocation or message.  The message is riding on a 
capability from Alice to Bob, since messages may only 
travel along capabilities in an object-capability system.  

In order for Alice to authorize Bob to access Carol, 
Alice must herself be authorized to access both Bob 
and Carol.  The requirement for both capabilities makes 
confinement possible, since no capability transfer can 
introduce a new connection between two objects that 
were not already connected by some path.  
Confinement of authorities within a set of objects can 
be determined simply by observing that the subgraph 
containing the set of objects is not connected to the rest 
of the object graph. 

Suppose, for example, we decide not to trust Bob.  To 
prevent Alice from delegating to Bob, we simply 
refrain from giving Alice access to Bob.  No subgraph 
of co-operating objects can delegate to Bob if Bob is 

not reachable from that subgraph to begin with.  This 
simple insight is the basis for many capability-based 
confinement systems [9, 21, 25, 26].  

Karger noted in 1988 that KeyKOS did, in fact, achieve 
confinement:  

KeyKOS achieves confinement by a 
mechanism called factories.  Essentially, a 
factory is a mechanism for creating new 
instances of protected subsystems.  

— Karger [13, p. 75]  

The discussion of KeyKOS goes on to compare its 
performance to that of another capability system, noting 
that occasionally KeyKOS requires two calls and 
returns instead of one.  Regardless of the benchmarks, 
however, the fact remains that confinement is indeed 
achievable in a capability system.  

It is unfortunate that the Confinement Myth continues 
to scare people away from capabilities so long after 
KeyKOS succeeded in confining programs.  The myth 
was further amplified by an influential and widely cited 
paper on extensible security architectures for Java:  

However, an important issue is confinement 
of privileges [26]. It should not generally be 
possible for one program to delegate a 
privilege to another program (that right 
should also be mediated by the system). This 
is the fundamental flaw in an unmodified 
capability system; two programs which can 
communicate object references can share 
their capabilities without system mediation. 
This means that any code which is granted a 
capability must be trusted to care for it 
properly. In a mobile code system, the 
number of such trusted programs is 
unbounded. Thus, it may be impossible to 
ever trust a simple capability system.  

— Wallach, Balfanz, Dean, Felten [24]  

Note that the above makes a slightly different error 
with respect to the confinement issue.  Rather than 
stating that capability passing is unrestricted, it 
correctly acknowledges that the ability to communicate 
object references is necessary for two programs to 
share their capabilities.  However, it appears to 
overlook the possibility that such an ability to 
communicate might be unavailable or restricted.  

We will examine some possible reasons for the 
persistence of the delegation myth in more detail 
below, but let us first address the third myth before 
entering into that discussion.  



THE IRREVOCABILITY MYTH 
The third myth states that capabilities cannot revoke 
access.  This is also quite widely believed, for example:  

Capability systems modelled as unforgeable 
references present the other extreme, where 
delegation is trivial, and revocation is 
infeasible.  

— Chander, Dean, Mitchell [3]  

This belief stems from the fact that, once a subject 
holds a capability, no one but the subject can remove 
that capability, not even the creator of the corres-
ponding resource.  It is true that capabilities themselves 
are not literally revocable.  Further, we know that the 
capability alone is sufficient to establish access to the 
resource.  These two facts might lead one to reasonably 
believe that there is no opportunity to revoke access.  

Revocable Access in Object-Capability Systems 
In an object-capability system, however, capabilities 
can be composed in such a way as to provide revocable 
access.  Suppose once again that Alice wants to give 
Bob access to Carol, but Alice also wants to have the 
option to revoke this access at some time in the future.  
To accomplish this, Alice could simply create a pair of 
forwarders, F and R, connected as shown in Figure 6.  
Of this pair, we may call F the forwarding facet, and R 
the revoking facet.  Alice would send Bob access to F, 
and retain R for herself.  Any messages sent to F get 
forwarded through R to Carol, so Bob may use F as if it 
were Carol.  This works as long as inter-object 
interactions are mediated by messages, and messages 
are handled generically, so that a reusable mechanism 
can forward any message.  

 
Figure 6.  Alice provides Bob with revocable access to 
Carol. 

When Alice wants to revoke Bob’s access to Carol, she 
invokes R, telling it to stop forwarding.  R then drops 
its pointer to Carol, and F becomes useless to Bob.  

Notice that no capabilities were themselves revoked, 
which is the truth supporting the myth.  Bob still has 
access to F.  However, access to F is now useless.  
Alice hasn’t revoked Bob’s capability itself, but she has 
revoked the access to Carol represented by that 
capability.  

This revocation mechanism also works for delegated 
authorities.  Suppose Bob delegates to Ted his access to 
Carol.  Since Bob only ever has access to F, not to 
Carol herself, Bob can only give F to Ted (and Bob can 
only do so if Bob also has access to Ted).  When Alice 
invokes R in order to disable F, this action prevents 
further access to Carol by Ted, or by anyone to whom 
Bob sent his capability, just as much as it prevents 
access by Bob.  

This scheme is not a recent invention.  Redell described 
exactly this method for revoking access in 1974 [18], 
and it was later implemented in the CAP-III system 
[12].  Karger addresses the concern that “indirection 
through a large number of revoker capabilities could 
adversely affect system performance” by suggesting 
that “a properly designed translation buffer, however, 
could cache the result of the capability indirections and 
make most references go quickly” [13, p. 111].  
KeyKOS [9] and EROS [21] both employ this 
optimization technique.  

ORIGINS OF THE MYTHS 
Now we will examine the history of the last two myths, 
in order to understand the thinking that led to them. 

An Argument Against Confinement 
Our story begins in 1984, when Boebert presented a 
claim [2] that no unmodified capability machine can 
enforce the *-Property (explained below). His paper 
defined an unmodified capability machine as one in 
which “capabilities are the sole mechanism for 
controlling access by programs to storage objects”, and 
defined a capability as a distinguished object 
containing two parts: a reference to a storage object and 
an access mode such as read or write. His argument has 
been cited as evidence that capability systems cannot 
solve the confinement problem, for example:  

Boebert made clear in [1] that an 
unmodified or classic capability system can 
not enforce the *-property or solve the 
confinement problem. The main pitfall of a 
classic capability system is that “the right to 
exercise access carries with it the right to 
grant access”.  

— Gong [7]  

(Gong’s citation [1] is Boebert’s 1984 paper, which 
corresponds to our citation [2]).  



Because Boebert’s argument [2] had such tremendous 
influence on later research, we will pay special 
attention to it here. The argument concerns the problem 
of enforcing two rules called the Simple Security 
Property and the *-Property.  The rules suppose a 
world in which subjects are assigned clearance levels 
(representing the trustworthiness of each subject) and 
resources are assigned classification levels 
(representing the sensitivity of the information they 
contain).  The Simple Security Property requires that 
subjects have read access only to resources classified at 
or below their clearance level.  The *-Property requires 
that subjects have write access only to resources 
classified at or above their clearance level.  Together, 
these two rules confine information at higher 
classification levels and prevent it from escaping to 
lower levels.  

Boebert’s example consists of a capability system with 
two levels, where there is a subject (Alice) and a 
memory segment (Low) at the lower level, and a 
subject (Bob) and a memory segment (High) at the 
upper level.  The two confinement rules are 
implemented by an oracle that grants capabilities of the 
appropriate modes to anyone requesting access, based 
on its special knowledge of the clearance of the subject 
and the classification of the object.  The oracle grants 
read capabilities whenever the object’s classification is 
at the same level or lower than the subject’s clearance.  
The oracle grants write capabilities whenever the 
object’s classification is at the same level or higher than 
the subject’s clearance.  

To make the argument easier to illustrate, we will 
depict subjects as carrying all the capabilities that such 
an oracle would have granted them.  Figure 7 shows the 
starting condition corresponding to the oracle Boebert 
described.  

In the attack that Boebert describes, Alice takes her 
Write-Low capability and writes it into the Low 
segment, as in Figure 8. 

Then, Bob can read this capability out of the Low 
segment, as in Figure 9. 

At this point, Bob can violate the *-Property by reading 
sensitive information out of the High segment and using 
his newly-acquired write capability to leak the 
information into the Low segment.  

Boebert concludes correctly that the particular use of 
capabilities he described does not enforce the 
*-Property.  However, the argument assumes that 
subjects can transmit capabilities anywhere they can 
transmit data, which is not the case in most capability 
systems. 

  
Figure 7. Initial condition for Boebert’s attack.  

 
Figure 8.  Alice writes her Write-Low capability into the 
Low segment.  

 
Figure 9.  The Write-Low capability now resides in the 
Low segment, which Bob can read.  

In partitioned or type-enforced capability systems such 
as KeyKOS [9], W7 [19], EROS [21], or E [4], 
capabilities and data are distinguished by the kernel or 
runtime.  Reading and writing capabilities are 
necessarily distinguishable operations from reading and 
writing data.  Nearly all capability systems make this 
distinction.  

Suppose now that each of the two classification levels 
has separate read capabilities for capabilities and data, 
and separate write capabilities for capabilities and data. 
The oracle now hands out capabilities of both kinds, 
much as before, with the exception that it does not hand 
out capabilities that permit reading or writing 
capabilities between different levels.  



 
Figure 10. Enforcement of the *-Property in a pure 
capability system.  

If we show each subject holding all the capabilities that 
it could possibly obtain from the oracle, we now have 
Figure 10. 

Since no capability-carrying capabilities cross between 
levels, no capabilities can cross between levels.  The 
only capability Bob holds to a lower level is a read 
capability, so the *-Property is enforced.  The only 
capability Alice holds to a higher level is a write 
capability, so the Simple Security Property is enforced.  

The result is an unmodified capability system 
(satisfying Boebert’s own definition) that is perfectly 
capable of enforcing both the Simple Security Property 
and the *-Property.  

The claim that capability systems in general cannot 
enforce the *-Property appears to be based on the 
misunderstanding that capabilities and data are not 
distinguishable.  A similar misunderstanding is the 
belief that capabilities are equivalent to bit strings:  

Since a capability is just a bit string, it can 
propagate in many ways without the 
detection of the kernel or the server....  

Generally a capability is a bit string and 
can propagate in many ways without 
detection...  

— Gong [7]  

The equivalence of capabilities and bit strings is a 
feature only present in a specialized category of 
capability systems known as password capability 
systems, such as Amoeba [17].  Boebert’s result is valid 
in any capability system that cannot distinguish 
between data transfer and capability transfer.  But 
partitioned and type-enforced capability systems do not 
have this problem, and password capability systems 
have been engineered to avoid this problem [1, 11].  
Moreover, it has been formally verified that any 
capability system enforcing independent controls on 
data transfer and capability transfer can enforce both 
confinement and the *-Property [22].  

The Capabilities-as-Keys Model 
Sometimes capabilities are explained using the analogy 
that capabilities are like copyable, unforgeable keys (or 
copyable, unforgeable tickets) in the real world.  This 
analogy is our Model 3. Capabilities as Keys.  It turns 
out that the Confinement Myth and the Irrevocability 
Myth are both true statements within such a model, so 
we believe this model is a likely contributor to the 
propagation of these myths.  Let us take apart the key 
analogy carefully to see how it compares with the 
object-capability model.  

As the story goes, each resource is protected by a lock, 
perhaps a locked door.  People carry keys on their key 
rings, and if they want to delegate authority, they can 
make copies of their keys to give to other people.  The 
analogy usually assumes that they can give copies of 
their keys to anyone they like.  To exercise an 
authority, a person must make two choices: a choice of 
key, and a choice of lock.  The access attempt succeeds 
or fails depending on whether these choices put 
together a compatible key and lock.  

As with object-capability systems, the keys are assumed 
to be unforgeable.  The only way someone can get a 
key to a resource is either by being its creator, or if 
someone else who already has the key decides to give 
them a copy of the key.  Subjects are also assumed to 
be encapsulated: if someone does not voluntarily 
decide to hand out a copy of a key, no one can steal it.  

Note that one can hold a key without knowing the door 
to which it belongs, and one can also designate a door 
without holding the key that opens it.  The analogy 
does not usually specify whether one chooses a 
particular key to use before seeking the appropriate 
door, or whether, upon encountering a locked door, one 
then tries all the keys on the key ring to find a key that 
works.  This decision will be pertinent to the discussion 
of the confused deputy problem, below.  

We will now compare this model to the other two 
capability-like models we have discussed.  

Keys versus Rows: Ambient Authority 
There is a crucial difference between the capabilities-
as-keys model and the capabilities-as-rows model.  In 
the key model, exercising an authority requires the 
selection of a key, but the capabilities-as-rows model 
has no such requirement.  

We will use the term ambient authority to describe 
authority that is exercised, but not selected, by its user.  
In an ambient authority system, subjects are not 
required to indicate a specific authority in order to 
exercise it.  The corresponding analogy is to imagine a 
world with doors but without keys.  When a person 
walks up to a door, the door magically opens if it 



deems the person worthy.  For example, Unix 
filesystem permissions constitute an ambient authority 
mechanism, because the caller of a function such as 
open() does not choose any credentials to present with 
the request; the request merely succeeds or fails.  

We will refer to the requirement that subjects select the 
authorities they exercise as Property D: No Ambient 
Authority. This distinction will also be relevant in our 
later discussion of the confused deputy problem.  

Keys versus Objects 
Although the capabilities-as-keys analogy is an 
appealing way to tell stories about capabilities, it is not 
an accurate representation of the object-capability 
model.  In Figure 11, which represents the capabilities-
as-keys model, the ability to read /etc/motd is behind 
a locked door.  To read it, Alice must request access to 
/etc/motd for reading and present the key that 
unlocks the door.  The diagram shows that Alice 
possesses such a key, represented by the thin black 
arrow pointing from Alice to the resource.  

The wide arrow on the left represents a message from 
Alice to Bob, in which Alice sends Bob a copy of her 
key.  Once Bob receives it, he will be able to read 
/etc/motd as well.  By giving Bob a copy of her key, 
Alice authorizes Bob to read /etc/motd.  The wide 
arrow containing the black arrow tail represents this act 
of authorization.  

In the capabilities-as-keys model, subjects authorize 
subjects (the wide arrow on the left), whereas subjects 
access resources (the wide arrow carrying the operation 
name read), and these are two distinct kinds of action.  
As long as subjects and resources are partitioned into 
two separate type categories, authorization and access 
cannot be unified because the types of these two 
operators do not match. 

Now compare Figure 11 to Figure 12, which illustrates 
authorization and access in the object-capability model.  
Three things are different.  

First, the resource box has been replaced by a circle 
labelled Carol, to depict the fact that there is no 
artificial separation between subjects and resources. 
Every subject is a resource, and every resource is 
conceptually a subject (though some resources, such as 
the number 3, are primitively provided).  Consequently, 
access and authorization can be unified.  This 
uniformity makes the object-capability model 
compositional; networks of authority relationships can 
be composed to any depth.  We will refer to this 
property as Property E: Composability of Authorities. 

Second, the message from Alice to Bob is now riding 
on a capability from Alice to Bob. In the capabilities-
as-keys model this access is not necessary (Alice can 
give her keys to anyone), but in the object-capability 
model such access is a prerequisite for delegation. We 
will refer to this requirement as Property F: Access-
Controlled Delegation Channels.  

Third, the message from Alice to Bob is labelled with 
an operation, print. (We imagine that Bob might be a 
printer, and Alice is asking Bob to print information 
from Carol.)  Since authorization is just a form of 
access in this model, authorizations are conveyed in the 
context of a request.  This will be relevant to our later 
discussion of the confused deputy problem. 

Observe that without Property E, we cannot construct 
revocable forwarders to solve the revocation problem.  
And it is precisely the restriction of Property F that 
enables confinement.  So, it is easy to see how staying 
within the capabilities-as-keys model could lead one to 
believe both the Irrevocability Myth and the 
Confinement Myth.  

Figure 11.  Authorization and access in the 
capabilities-as-keys model. 

Figure 12.  Authorization and access in the object-
capability model. 



SUMMARY OF THE FOUR MODELS 
We have now described four different security models 
and identified several properties that distinguish them. 
These are summarized in Figure 13.  

Chander et al. have presented and compared three of 
these models [3], which they identified as Macl, MCrow, 
and MCref. They call Macl “access control lists”, which 
corresponds to our Model 1, and call MCrow either 
“Lampson matrix capabilities” or “capabilities as 
rows”, which corresponds to our Model 2.  They 
describe MCref alternately as “capabilities as 
unforgeable bit strings”, “capabilities as tickets”, or 
“capabilities as references”, but MCref actually 
corresponds to our Model 3, since their definition of 
the Pass operation allows subjects to pass their 
capabilities without restriction (that is to say, MCref 
lacks Property F).  Model 4 (capabilities as object 
references), which describes most of the capability 
systems in practice, is missing from their analysis.  

SYSTEMS IN PRACTICE 
For comparison, we will now look at some examples of 
security mechanisms in practice to see how they 
measure up against these properties.  

Unix and NT Filesystems 
Representative real-world systems that fit the ACLs-as-
columns model include the standard Unix filesystem, 
Unix with a setfacl() extension, and the NT ACL 
system. All three of these mechanisms lack all six of 
Properties A through F.  

POSIX Capabilities 
The “POSIX capabilities” mechanism described in 
POSIX 1003.1e might seem to be a representative 
system for capabilities-as-rows, since authorities are 
indeed aggregated at the subject. Indeed, with respect 
to all of the six properties we have defined so far, the 
“POSIX capabilities” mechanism fits the capabilities-
as-rows model. However, there is one very important 
difference: the set of resources (POSIX capability 
flags) is finite and fixed.  

At the level of detail that we typically care about 
(individual files, programs, and so on) resources are 
created and destroyed all the time. There is a bounded 
set of POSIX capability flags only because they do not 
express authorities at this level of detail. For example, 
one of the POSIX capability flags is CAP_CHOWN, 
which represents the power to change the ownership of 
any file on the entire system. Just as with the subject 
granularity issue, we can consider this a granularity 
issue with respect to resources, where the ability to 
dynamically create new resources is the clear dividing 
line between “fine-grained” and “coarse-grained”.  

We will refer to this new distinction as Property G: 
Dynamic Resource Creation. All of the other models 
and examples mentioned here have this property, but 
the “POSIX capabilities” mechanism does not.  

POSIX capability flags can be transmitted to a new 
process when it is created, but the ability to start new 
processes requires access to executable files. Such 
access depends on file permissions rather than POSIX 
capabilities, and is also affected by the view of the 

Property Test Model 1. 
ACLs as 
columns 

Model 2. 
capabilities 

as rows 

Model 3. 
capabilities 

as keys 

Model 4. 
object 

capabilities 

A. No Designation 
Without Authority 

Does designating a resource always convey its 
corresponding authority? 

no 
(impossible) 

unspecified 
(possible) 

no yes 

B. Dynamic Subject 
Creation 

Can subjects dynamically create new subjects? no 
(in practice) 

yes 
(in practice) 

yes yes 

C. Subject-Aggregated 
Authority Management 

Is the power to edit authorities aggregated by subject? no 
(in practice) 

yes 
(in practice) 

yes yes 

D. No Ambient Authority Must subjects select which authority to use when 
performing an access? 

no no yes yes 

E. Composability of 
Authorities 

Are resources also subjects? unspecified unspecified no yes 

F. Access-Controlled 
Delegation Channels 

Is an access relationship between two subjects X and Y 
required in order for X to pass an authority to Y? 

unspecified unspecified no yes 

Figure 13.  Comparison of the four security models.  Model 1 represents ACLs in practice and approximately as 
commonly understood.  Model 4 represents all the major capability systems in practice, in which capabilities are 
object references.  Models 2 and 3 represent two different ways in which capabilities are sometimes explained: 
according to a naive static view of Lampson’s access matrix (“capabilities as rows”), and according to the metaphor 
that capabilities are like unforgeable physical keys in the real world (“capabilities as keys”).  

 



filesystem (which a call to chroot() may have 
altered). Thus, with respect to Property F: Delegation 
on Access-Controlled Channels, delegation can be 
somewhat limited, but the complexity of Unix 
filesystem access makes the question of confinement 
unclear.  

SPKI 
SPKI [5] is a reasonable real-world representative for 
the capabilities-as-keys model. In SPKI, an authority is 
a signed certificate carried by a subject. The certificate 
specifies the resource and the kind of access, and the 
existence of a valid signature on the certificate conveys 
the authorization.  

Authorities (certificates) are always bound to resource 
designators (names) in SPKI, because resource 
designators are embedded in the signed certificates. If 
the certificate is altered to break this binding, the 
signature becomes invalid. However, designators are 
not always bound to authorities. The designators are S-
expressions that describe a path to the resource, and do 
not in themselves convey any authority.  

Just as with the key analogy, authority in SPKI is not 
ambient: a subject must choose and present a certificate 
as part of an attempt to access any resource. Also as 
with the key analogy, propagation of SPKI certificates 
is unrestricted; the holder of a certificate may give a 
copy of that certificate to any other party.  

Nothing prevents the construction of entities that can 
both accept and hold SPKI certificates, so, strictly 
speaking, authorities are composable in this scheme.  
However, we have not heard of this kind of indirection 
being done in practice; it is not clear whether such a use 
of SPKI could be made practical.  

Unix File Descriptors 
File descriptors in Unix are nearly, but not quite, 
equivalent to object capabilities. Since they are 
sometimes cited as an examples of capabilities, it is 
useful to compare them to the models we have 
discussed. Although files themselves cannot wield other 
file descriptors, a file descriptor could designate a pipe 
to another process that wields file descriptors. So file 
descriptors are composable as long as they are limited 
to the functionality of a pipe (e.g. pipes do not support 
random access). File descriptors differ from object 
capabilities in that the channel for transmitting file 
descriptors among processes (a Unix socket) is 
controlled by an ACL, not by a capability-like 
mechanism. Thus, while the file descriptor mechanism 
is similar to object capabilities in some ways, confining 
the propagation of file descriptors depends on the 
details of the ACL system.  

Pure Capability Systems 
A large number of capability systems in the history of 
security research have all seven of the security 
properties we have mentioned, and thus fit Model 4.  
These systems include Dennis and Van Horn’s 
Supervisor, CAL-TSS, CAP, and Hydra (all described 
in Levy’s survey of capability systems [16]), KeyKOS 
[9], W7 [19], Mungi [11], EROS [21], and E [4], as 
well as the password capability system by Anderson, 
Pose, and Wallace [1]. 

ADVANTAGES OF OBJECT-CAPABILITY SYSTEMS 
Least-Privilege Operation 
An essential design requirement for secure systems is 
the principle of least privilege [20]: every entity should 
operate using the minimal set of privileges necessary to 
complete its task.  In terms of authority relationships 
between subjects and resources, we can look at this 
principle from two perspectives. Operating in least-
privilege fashion demands that we provide access to 
minimal resources, and that we grant such access to 
minimal subjects.  

In the course of comparing security models and systems 
so far, we have already encountered both granularity 
issues. Property B: Dynamic Subject Creation is 
necessary for limiting authority when starting new 
running instances of software components. In order for 
subjects to be able to create instances with limited 
authority, each instance must have its own separate set 
of authorities, and must therefore be a distinct subject. 
For example, Property B allows a user to invoke a 
program while granting it only the subset of the user’s 
authority that it needs to carry out its proper duties. 
Property G: Dynamic Resource Creation is necessary 
in order for the model to be able to express access 
restrictions on objects (such as individual files) that can 
be created and destroyed. No security model limited to 
controlling a static set of resources can possibly have 
sufficient expressive detail to support least-privilege 
operation on a dynamic system.  

So both Property B and Property G are necessary 
(though not sufficient) for least-privilege operation. 
The three capability-like models offer both of these 
properties, whereas the ACL model is missing Property 
B. The POSIX capabilities mechanism bears a weak 
resemblance to capability models but lacks Property G, 
so it cannot (on its own) support least-privilege 
operation.  

Avoiding Confused Deputy Problems 
A deputy is a program that must manage authorities 
coming from multiple sources.  A confused deputy [10] 
is a deputy that has been manipulated into wielding its 
authority inappropriately.  A frequent challenge in 



computer security is to construct deputies that cannot 
be confused.  Confused deputy problems are a common 
class of security incidents in many systems, including 
the World-Wide Web [23].  

The classic story of the confused deputy [10] concerns 
a compiler in an ambient authority system.7  The 
compiler is granted write access to a file called BILL in 
order to store billing information.  Upon invoking the 
compiler, the user can specify the name of a file to 
receive debugging output.  If the user specifies BILL as 
the name of the debugging file, the compiler is fooled 
into overwriting the billing information with debugging 
information.  

The problem is not caused by the compiler using access 
that it should not have.  The problem is that it exercises 
its authority to write to BILL for the wrong purpose.  

While no security model can prevent people from 
writing bad programs, certain properties of the security 
model can have a profound effect on our likelihood of 
writing reliable programs.  Let us consider the confused 
deputy problem with respect to two properties we have 
identified: Property D: No Ambient Authority and 
Property A: No Designation Without Authority.  

Ambient Authority 
The question of ambient authority determines whether 
subjects can identify the authorities they are using.  If 
subjects cannot identify the authorities they are using, 
then they cannot associate with each authority the 
purpose for which it is to be used.  Without such 
knowledge, a subject cannot safely use an authority on 
another party’s behalf. 

Suppose that we return to the compiler story with this 
property in mind.  If the authority to write to BILL were 
not ambient, then the compiler could hold one key to 
BILL for the purpose of writing billing information, 
and accept another key from the user for the purpose of 
writing debugging information.  Then, as long as the 
compiler uses each key for its intended purpose, the 
confused deputy problem cannot occur.  The lack of 
distinguishable keys would prevent the compiler from 
having any way to draw this distinction.  

Eliminating ambient authority helps make it possible to 
avoid confused deputies, but doesn’t guarantee that 
deputies will never be confused.  We mentioned earlier 
that it matters whether one chooses a key to use before 
attempting to open a door, or whether one goes to a 
                                                           
7  Actually, the story we tell here is a simplified version of the 

original. In the original story, the compiler is given write access to 
a directory containing the billing file for the purpose of writing a 
different file. With respect to the confused deputy problem, the 
point is the same.   

door and then tries all available keys to find one that 
works.  Even if one can distinguish the keys, deciding 
to try all available keys puts one at risk of becoming a 
confused deputy.  

In order to avoid the confused deputy problem, a 
subject must be careful to maintain the association 
between each authority and its intended purpose.  Using 
the key analogy, one could imagine immediately 
attaching a label to each key upon receiving it, where 
the label describes the purpose for which the key is to 
be used.  In order to know the purpose for a key, the 
subject must understand the context in which the key is 
received; for example, labelling is not possible if keys 
magically appear on the key ring without the subject’s 
knowledge.  

Separable Designators 
We mentioned earlier that designating resources is a 
tricky problem when designators are separated from 
authorities.  When designators and authorities take 
separate paths through a system, their recombination is 
likely to lead to confused deputies.  

Looking again at the scenario of the compiler as 
confused deputy, we see that an authorization given by 
one party is used to access a resource designated by a 
different party, bringing about an unintended transfer of 
authority.  In ACL systems, because designation and 
authorization are necessarily separated, this confusion 
is difficult to escape.  In a system where designation 
and authority are inseparable, this common type of 
confused deputy problem – in which a malicious party 
designates a resource they are not supposed to access – 
simply cannot occur. 

In addition, if resource designations can never be 
separated from authorities, any request asking the 
deputy to access a resource necessarily includes the 
corresponding authorities, and places those authorities 
in the context of the request.  This helps to provide the 
aforementioned context that a deputy needs in order to 
determine the proper purpose for each received 
authority.  

Any request for access to a resource must designate the 
resource in some way.  If designators are inseparable 
from authorities, any request for access must 
necessarily include the authority, which means that any 
subject requesting access always chooses the authority 
to exercise.  So the presence of Property A implies the 
presence of Property D.  

 Figure 14 summarizes the arguments regarding the 
confused deputy issue in this section. 



 
Figure 14. Design factors related to confused deputies. 

Object-capability systems possess both Property A and 
Property D, so they enforce the combination of 
designation with authority, enable the assignment of 
local identifiers to authorities, and encourage the 
presence of context when authorities are conveyed.  All 
three of these things contribute to establishing a chain 
of designation, running from the original creator of a 
resource, through the entity that exercises the resource, 
and finally to the resource itself.  Maintaining this 

unbroken chain of designation greatly improves our 
ability to reason about the behaviour of trusted 
programs. 

SPKI is an interesting case to analyze in these terms.  
Each certificate comes with an embedded nonlocal 
resource designator in cleartext, so designators can be 
separated from authorities.  However, the construction 
of unconfusable deputies can still be feasible so long as 
(a) certificates arrive in the context of a request (in 
particular, an undamaged request) and (b) subjects 
maintain local identifiers for the certificates they hold. 
SPKI does not specifically provide for a certificate or 
tuple of certificates to be securely bound together with 
a message so that the receiver can determine the 
intended purpose for the conveyed authorities. Such a 
feature would be necessary to enable (a).  

SUMMARY OF SYSTEMS AND PROPERTIES 
The table in Figure 15 summarizes all of the models 
and systems we have mentioned, evaluating them in 
terms of the seven security properties, the two model-
specific myths, and the issues of confused deputies and 
least-privilege operation.  The columns are arranged 
roughly along a spectrum from ACLs to capabilities.  

Property Model 1. 
ACLs as 
columns 

Unix fs, 
setfacl(), 

NT ACLs 

Model 2. 
capabilities 

as rows 

POSIX 
capabilities 

Model 3. 
capabilities 

as keys 

SPKI Unix file 
descriptors 

Model 4. 
object 

capabilities 

CAP, Hydra, 
KeyKOS, W7, 
EROS, E, etc. 

A. No Designation 
Without Authority 

no 
(impossible) 

no unspecified 
(possible) 

no no no yes yes yes 

B. Dynamic Subject 
Creation 

no 
(in practice) 

no yes 
(in practice) 

yes yes yes yes yes yes 

C. Subject-Aggregated 
Authority Management 

no 
(in practice) 

no yes 
(in practice) 

yes yes yes yes yes yes 

D. No Ambient Authority 
 

no no no no yes yes yes yes yes 

E. Composability of 
Authorities 

unspecified no unspecified no no possible, 
but unusual 

yes, 
as pipes 

yes yes 

F. Access-Controlled 
Delegation Channels 

unspecified no unspecified yes, 
but by ACL 

no no yes, 
but by ACL 

yes yes 

G. Dynamic Resource 
Creation 

yes yes yes no yes yes yes yes yes 

 
Consequence 

         

Irrevocability Myth 
(holds if B but not E) 

false false true true true false depends false false 

Delegation Myth 
(holds if B but not F) 

false false true unclear true true unclear false false 

Confused Deputy (hope- 
less without D, best if A) 

danger danger danger danger better better best best best 

Least Privilege 
(requires B and G) 

infeasible infeasible better infeasible better better better better better 

Figure 15. Comparison of various systems and models with respect to the seven security properties. 



A NOTE ON THE WORD “CAPABILITY” 
Given these various interpretations of the capability 
model, the reader may wonder what one should adopt 
as the most legitimate meaning for the term capability.  
We should also explain why we feel justified in 
declaring the Irrevocability Myth and Confinement 
Myth to be false, rather than merely false in certain 
cases.  We would argue that the “true” capability model 
is the object-capability model, because all known major 
capability systems take the object-based approach (for 
examples, see [1, 4, 9, 11, 16, 17, 19, 21]).  In all of 
these systems, a capability is an object reference – not 
something that behaves like a key or ticket in the real 
world.  Definitive books on capability-based systems 
[6, 16] also describe these systems from the object-
capability perspective, and explicitly characterize them 
as “object-based”.  

We know of no security mechanisms outside of the 
object-capability model that have described themselves 
using the word capability except for “POSIX 
capabilities”, “Netscape capabilities”, and “split 
capabilities” [14].  POSIX capabilities are not generally 
described as “capability-based security”.  The 
“Netscape capabilities” extensions to Java were fairly 
short-lived and have not been presented in the research 
literature as a capability system.  Moreover, both 
“POSIX capabilities” and “Netscape capabilities” have 
never been presented as security mechanisms that can 
stand on their own, instead only serving as an extension 
to existing security systems.  The split capabilities 
model is explicitly presented in contrast to the pure 
capability model [14]. 

CONCLUSION 
We have described a progression of four security 
models from traditional ACLs to pure capabilities, 
while defining a set of seven properties that can be used 
to distinguish the models.  We have also used the 
properties to evaluate and compare some real-world 
security systems that resemble the models.  

The distinctions that we have drawn support our refu-
tations of three common misconceptions concerning 
capability-based systems – the Equivalence Myth, the 
Confinement Myth, and the Irrevocability Myth.  
Although the myths have some truth in the intermediate 
security models that are often taken as interpretations 
of capabilities, they do not hold for the “pure 
capability” or “object-capability” model represented by 
the vast majority of capability systems.  Furthermore, 
the properties we identified show that capability 
systems lack certain fatal flaws of ACL systems –  
namely, the susceptibility of ACLs to the confused 
deputy problems that are inherent in ambient authority 
systems, and the inability of ACLs to perform least-

privilege delegation to new processes.  Capability-
based systems provide much stronger support for the 
precise, minimal, and meaningful delegation of 
authority, which is fundamental to secure operation. 
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