Hash Systems for Single Disk Allocation

Chris Riley, Christian Scheideler, Jonathan Shapiro
SRL Technical Report SRL2003-01
Department of Computer Science
Johns Hopkins University
{chrisr,scheideler,shap}@cs. jhu.edu

Abstract

Single- and multiple-choice hashing strategies have long been studied by the theoretical computer
science community. In this paper we consider a new application of these hashing strategies,
that of block placement on a single hard disk drive. We present a new method of viewing
this placement process motivated by recent systems research, and overview a system based
on these observations, one which breaks the traditional direct map to blocks on the physical
hard drive and uses instead a very large logical address space and a randomized mapping to the
physical level. We analyze hashing strategies for their practicality in handling this new mapping,
targeting the conflicting goals of reducing collisions and reducing expected block access time.

1 Introduction

Current disk file systems use complex, deterministic placement strategies to decide the location of
file blocks on the disk. Conceptually, we may view this as a two-phase process in which the file
system places blocks into a “file system block address space” (FSBA), and a separate placement
policy maps this space into the logical block address (LBA) space of the disk. Because of latencies
resulting from the mechanics of disk drives, mapping sequential file blocks to sequential locations of
the disk has significant performance advantages. As a result, only direct (1:1) mappings between the
FSBA and LBA spaces have been attempted in existing file system designs. The resulting placement
strategies lead to fragmentation, poor file system aging, and complex sequentially dependent update
strategies that must balance achieved placement locality against file system recoverability.

If the direct map requirement can be broken, many of these problems can be eliminated. In
particular, if a sufficiently large FSBA space can be mapped by a repeatable randomized method
to the disk LBA space, responsibility for placement can be offloaded to the disk subsystem and
entirely new design strategies for file systems become possible. This would significantly improve
disk manageability and scalability, reduce access latency variance, and if done with care might
improve perfomance. The PARAID project within the Systems Research Laboratory is designing a
file system and disk storage subsystem based on these concepts. The key challenge in doing so is to
maximize the number of blocks that are correctly located with the first disk rotation at high disk
utilizations while operating within a severely limited main memory overhead. This paper studies
at length a number of randomized hashing strategies for mapping the FSBA space to the disk LBA
space that meet this objective.

The primary concerns for the mapping process are that the number of collisions is minimized,
and that the expected block access time is very low. Naturally, collisions imply that further
techniques are required to manage the storage of those blocks (since they must be kept somewhere),

and thus are to be avoided. However, strategies which increase the block access time excessively
(for example, by requiring two independent drive accesses with high probability to locate a block)
in order to reduce collisions are entirely unacceptable for performance considerations. Standard
single- and multiple-choice hashing algorithms are insufficient for handling this mapping process;
neither is capable of supporting both objectives. We therefore construct extensions of these which
are capable of simultaneously reducing collisions and access times, and compare our extensions to
the originals both through theoretical analysis and through simulation.

To the best of our knowledge, randomization has not been studied as a tool for assisting in
local disk block placement. There are many difficulties inherent in this strategy, including main-
taining good locality, avoiding excessive complexity (and metadata), providing online adaptivity,
and reducing and resolving overflows. With a properly designed system, all of these challenges can
be met with a low operational overhead. The complete allocation system outlined in this paper
maintains low fragmentation, uses little storage overhead, allows for high adaptivity while requiring
few updates, maintains sufficient locality, and runs efficiently.

1.1 Related Works

Randomization in disk placement strategies has been used by other researchers to help reduce
variance in I/O latencies [8], increase scalability [3, 9, 10], and to provide online adaptivity [13].
All these works have focused on multiple-disk systems, and many strategies are complex and/or
impossible to apply to the problem of allocation to a single disk.

Research on disk-level traces [13] has indicated that only a small amount of locality is actually
observed in general-purpose servers (due to the number of parallel requests for a disk). These results
seem to indicate that increases in locality achieved in the FSBA space have rapidly declining value
for multiprocess workloads. Individual requests seen at the disk layer involve a relatively small
number of sequential blocks, and successive requests from different processes cause the disk arm to
move. This defeats the benefit of further FSBA-level locality. As a result, constant locality may in
practice be sufficient.

Random allocations have been studied as balls and bins games or hashing by theoretical com-
puter science researchers for many years now [1, 2, 4, 6, 5, 7, 12]. These are generally studied in an
online, sequential model, where balls are thrown one at a time and decisions for placement must be
made based only on the decisions of the previous balls. The classic single-choice algorithm, where
each ball picks a single bin uniformly at random and is placed there, has been shown to have a bin
of size + O(y/™logn + log)ﬁ) Z;n) with high probability, where m and n are the number of balls
and bins respectively [11]. Other strategies were developed which involve choosing multiple bins
and deciding between them, and these improve the overhead of the largest bin by an exponential
factor, to > + O(loglogn) [1, 2].

2 The Model

We deal with a different view of the balls and bins problem in this paper. The “bins” in this case
are fixed regions on the disk drive; we consider them to be fixed-size buckets, and let the number of
buckets and the number of bins increase at the same rate (maintaining a constant linear ratio which
is the bucket size). Unlike traditional analysis, we do not concern ourselves with the size of the
largest bucket; we are instead concerned with the total number of overflow elements in the system
(all blocks allocated to a bucket that is already full, assuming a sequential block assignment), since
these are the blocks which must be dealt with separately.

We will abstract a disk to a linear set of buckets. A bucket will be read and written by the
disk in a single operation; therefore placement within a bucket is trivial. When considering the
proximity of two buckets on the disk to evaluate access times, we will consider only their proximity
on the line, not taking into account required seek or rotational movements necessary on a physical
disk to travel from one to the other.

We consider the input to be a set of block addresses chosen arbitrarily from a large address
space (with no repetitions), though the selected addresses must be capable of being placed within
the physical address space. We require that the utilization on the system is bounded by (1 — €) for
some € > 0, or that of the available n blocks on the disk, only (1 — €) - n of them need to be filled
to store all the data. We also assume that each used block is to be assigned a single unique block
on the hard disk, and that all blocks are identical in size.

The simulation results presented in this paper are based on C programs which treat buckets
on the hard drive as a simple linear array. It uses as its hash function the built-in pseudo-random
number generator random(), which can be seeded with specific values using srandom() and then
called to return a repeatable pseudo-random hash of the seed value. It is non-linear and has a
period of approximately 16 * (23! — 1), with output as integers € [0,23' — 1]. This has shown
itself to be by far the most random of several tested hash functions; we will not discuss in this
extended abstract the other functions or the performance comparisons. Input block addresses are
first XOR’d with a randomly chosen hash key, which allows the function to be replaced if necessary
(by choosing a new hash key). The process of XOR with a single key ensures that input values are
merely permuted, which implies that the input to the hash function contains no collisions.

The simulations compare the overflow performances of several allocation strategies. They are
not meant to evaluate the compactness of the data on disk, the linearity of placement, or the
efficiency of computing block location - these objectives are sufficiently analyzed by mathematical
methods and by the system layout, as they do not depend on the random choices made by the
process.

3 System Objectives
The system is designed to address the following objectives:

1. The used data should be compactly stored on the disk.
2. The position of a block must be efficiently determinable.
3. Linearity of data placement should be sufficiently preserved.

4. The number of overflows should be very low.!

The first of these objectives is addressed in section 4.2 which discusses a division of the buckets
into superbuckets and the use of previous research to manage this division. The second is met by
the system as a whole. The third is addressed in section 4.1, which discusses some preprocessing
of the input to the system, referencing related systems research.

This paper is focused primarily on the fourth objective, the most challenging from an algorithmic
perspective. To the best of our knowledge, the problem of counting overflows in hashing algorithms
has not been studied. Strategies which produce a low maximum bin size likely produce an even

! A small number of overflows can be managed by means of a victim cache variation developed by Professor Shapiro,
enabling all blocks in the system to have a unique location. For performance reasons this victim cache must reside
in memory, which is the ultimate source of our need for a very low probe miss rate.

File System Block Address Space

Figure 1: System Overview

load and few overflows, but the mathematical results of varying bin size, utilization, and number
of blocks on overflows have not been previously analyzed.

4 System Overview

In this section, we will give an overview of the entire allocation system, explaining each of its
components and demonstrating that the desired objectives are maintained. The purpose of this
paper is not the complete description of nor the defense for the proposed allocation system; a brief
description is given merely to motivate the work in later sections.

The system begins at the file system level with a very large virtual block address space. It
collects blocks at the file system level into groups called extents, which are then mapped to a
superbucket (a large contiguous disk region) at the physical level via the cut-and-paste strategy
described below. Within a superbucket, the extents assigned to it are hashed to a smaller region on
the disk (a subset of the region covered by the superbucket) called a bucket, which corresponds to
a small set of contiguous blocks on the disk capable of storing a small constant number of extents.
The bucket is read and written as a single unit by the disk, so placement within the bucket is
trivial.

4.1 System Input and Extents

As mentioned previously, our system involves a very large, sparse virtual block address space (the
FSBA space). Full details of the management of this space are omitted, but a larger space allows
for fairly trivial management at the file system level, most notably in that it removes the need for
logical address reuse for different files completely. We will treat the input to the allocation system
as merely a set of logical addresses which need to be assigned physical addresses.

Rather than being divided into blocks, each file is divided into extents, or small groups of blocks.
These are treated merely as larger blocks in the later stages of the analysis, and will be referred to
simply as blocks. The extents are specifically constructed to be large enough to preserve most of
the expected run-time locality of access as evaluated by the disk-level traces by Wilkes [13].

— 1

>< UY(n+1)
’ o |

Figure 2: The cut-and-paste strategy: adding a disk.

[e]-TnT

4.2 Cut-and-paste

In order to preserve compactness of storage of data on the disk, the cut-and-paste strategy of [3] is
used to divide the disk space into multiple superbuckets of a fixed size, each of which corresponds to
a fixed (large) region of blocks on the disk. This strategy has the advantage of maintaining a uniform
distribution of blocks to superbuckets while increasing or decreasing the number of superbuckets,
while performing very few block movements. We then use only as many superbuckets as we need
to store the data with sufficient utilization (increasing or decreasing the number of disks used as
the number of blocks used increases or decreases), thus keeping the amount of data on the disk
compact.

The algorithm works by hashing all input addresses to the real interval [0,1] (though it is
also possible to discretize the range of the output function while achieving similar results). For
n disks, the subintervals assigned to each disk will total exactly 1/n (thus the interval is evenly
distributed), and this division will be maintained over the addition or removal of disks. Initially,
the entire interval is assigned to disk 1. Then, to advance from n disks to n + 1, the top m
of the set of intervals assigned to each disk is removed, and these are concatenated to form the
interval assigned to disk m + 1, with the higher-indexed disks’ portions placed lower in the set of
intervals assigned to disk n + 1 (see figure 2). Thus the new size of the set of intervals assigned to
disk n+1 is ﬁ = %H’ and the size of the previous disks is % — m = RLH The correct disk
can be computed efficiently for any real number in [0, 1] with no disk queries and only knowledge
of the current number of disks 7.

All following analysis examines only the situation within a single superbucket. The number of
blocks allocated to a superbucket can be bounded tightly, and under the assumption that our hash
function is (nearly) random, it does not matter which blocks are assigned to a superbucket (for the
purposes of analyzing the collisions within the disk). Also, the superbuckets operate independently,
which has the added advantage that a hash function could be replaced within a single superbucket
(in the event of poor performance) without needing to rearrange blocks in the other superbuckets.

4.3 Hashing

Within a superbucket, we then must hash all logical blocks assigned to that superbucket to a set
of buckets which cover the corresponding portion of the physical disk. As mentioned before, each
bucket is designed to contain a fixed number of blocks (its capacity). Our objective in selecting an
appropriate hash system is to minimize the number of overflow elements produced in the hashing
process while keeping the process of accessing an element efficient so that we may handle all elements
as easily as possible.

We use the term hash system to emphasize further work beyond the basic hash function, which
accepts a single numerical input and produces a single repeatable random numerical output, and

oot

minlnininlnlninlnlnin

'

oot

Yoy

00000000000

Figure 3: A sample hash in each system: single-choice, greedy multiple-choice, limited range
multiple-choice, and bucket windowing

which we use as a primitive operation. Multiple-choice hashing algorithms are hash systems accord-
ing to this definition, where two hash function outputs are produced and compared to determine
the actual placement of the block.

The hash systems we consider for use are:

1. Standard single-choice: The block is assigned to a uniformly chosen bucket across the entire
output bucket space.

2. Greedy multiple-choice: Two uniform random buckets are selected from the entire output
bucket space, and the block is placed in the one with the smallest current load.

3. Limited-range multiple-choice: A first-choice bucket is selected from the entire space, and
then a second-choice bucket is chosen at random within a certain range after the first.

4. Bucket window: A bucket is selected from the entire space uniformly at random to be the
beginning of a small sequential bucket window. All buckets within the window are examined,
and the block is placed in the least loaded bucket in the set.

5 Analytical Results

This section outlines and analyzes the above-mentioned hashing systems both for their feasibility
in reducing overflows and expected access time. In the following section simulation results for the
algorithms will be presented and discussed.

5.1 Single-choice hashing

The most basic, simple hashing technique involves picking a single bucket from the set of all buckets
uniformly independently at random. This can be efficiently implemented by computing a hash value
with an integer output (uniformly distributed) between 1 and the number of buckets in the system.

The size of the largest bucket is m/n + O(y/mlogn/n + log’ﬁ)g —) [2] with high probability (where
m is the number of blocks in the system and 7 is the number of buckets).

Theoretical analysis of hashing techniques is usually concerned with the problem of the largest
bucket size. This has applications in such areas as scheduling theory (where the greatest concern is
which of a set of processors assigned a set of jobs will finish last, for example), but has only limited
relevance to our analysis, since any height over capacity requires equivalent additional work. Thus
we consider now the problem of counting the number of overflows in a single-choice hashing system.

The following formula gives tight bounds for likelihood that a sum of independent uniformly

distributed Bernoulli random variables will exceed a certain distance from its expected value [11]:

2 —2?)2 Sm — pm
< Pr[——— >
\/27r(a:+v:62+4)6 < Prl vmy 2]
4 YA

= V27 (3z + V22 + 8) ¢

We will use the upper limit of this formula to achieve a (fairly) tight value for the expected
number of balls overflowing in a single bin. Here, S,, is the random variable representing the size
of a single arbitrary bin, and y and v represent the mean and variance of each z;, the Bernoulli
components of S, (i.e. the variable representing whether or not each ball lands in the bin). Here,
p=Elzi]=p=1andv=E[z?] - (E[z;])?=1- # = ”n—_21

Define a random variable Y to be the number of balls overflowing in a single arbitrary bin y.
The range of values for Y are integers between 0 and (m - capacity(y) or ¢(y)), since this maximum

would mean that all m balls were placed in this bin. Therefore:

m—c(y)
ElY] = Z k - Prloverflow = k]
k=0
m—c(y)
= Z Prloverflow > k]
k=0

We assume partial utilization u € [0,1) and an expected bucket size ¢ = 7. Define a = % to
be the “acceptable overflow” factor. Then an overflow corresponds to the amount Sy, is over aum,
since we expect S, to be um = ¢, but we can allow it to be slightly more because the bucket is
expected to be only partially utilized. Therefore let us translate the statement “overflow > k” as
follows:

Spm—apm > k
Sm—pm— (a—1)pm > k
Sm—pm > k+(a—1)um
Sm — um S E+(a—1)c
vmyo T miL
E+ (a—1)c

SRE

The last line is a relaxation for simplicity. The right-hand side, therefore, is the z in (1), and
k—l—(a—l)C).
=)

this formula can then be substituted in (1) to give the following summation (where z =

m—ac

—32/2
Z \/_3x+\/x2— 8)
g moec ew
V2T P 3(k+(\0}gl)0)+ (k—|—(o¢c—1)c)2 +8

This translates to (roughly) an expected constant fractional overflow for the bucket if o and
¢ are fixed. Dividing the formula by c gives the probability that a single ball will overflow in the
system, which can be logically extended to be the expected fraction of balls in the total system

which overflow. A graph of sample values for this probability based on fixed utilization u = é

and actual bucket capacity aum is given; the m at the top of the summation is omitted since the
higher-order terms contribute little to the total. A larger bucket size produces a flatter increase line
at lower utilizations, but as utilization increases the larger bucket becomes less and less capable
of helping, and all curves approach the same increase line (where almost all blocks produce a new
overflow).

Overflow %

19.00 BucketSzel

18.00 R

17.00 BucketSizels ~ -

16.00 Bucket Size 32

15.00 | BuketSize1%8
1400

13.00
1200
1100
1000
9.00 . -
8.00 —— -
700 - .
6.00 — -
500 ——= 7 =
400 P =
3.00 -
200 —F - = | -
100 ———= =
0.00 —= ="

Utilization %
80.00 85.00 90.00 95.00 100.00

Figure 4: Single-choice hashing overflows, theoretical upper bounds.

The complexity of this formula and the lack of sufficiently tight analyses of the probabilities of
general overflow amounts in other hashing strategies cause the analysis of expectations of overflows
using other strategies to be beyond the scope of this paper.

5.2 Multiple-choice hashing

Multiple-choice hashing techniques involve selecting a small set of buckets for each block and placing
the block in the least loaded bucket of the set. To find a block, then, one must store some form
of directory information for each bucket to indicate the presence of the block; then in reading, all

of a block’s possible buckets must be read until the correct one is found. Algorithms for these
techniques differ primarily in how they select the set of candidate buckets.

The first algorithm for this is known as the Greedy strategy, which selects the buckets in the set
uniformly at random from the entire set of buckets. If there are d buckets chosen for each block, in
the case m = n the largest bucket is of size loglogn/log d+©(1) with high probability [1]. Another
possible strategy which achieves a slightly better load is the Always-Go-Left strategy of [12], which
partitions the set of buckets into d regions and selects one from each region. Then the least loaded
of the selections is used; in the event of a tie the leftmost bucket of minimum load is selected. This
strategy achieves a maximum load of Inlnn/(d x In ¢4) — O(1), where ¢4 is a function of d which
approaches 2 for increasing d (and is always less than 2).

Since these strategies achieve a significantly better maximum bin size than the single-choice
strategy, it follows that they would probably correspond to significantly lower overflows. However,
they are not efficient enough to be used in a physical disk system - the reading of a single block
will use % disk operations in the expected case (assuming all d choices are equally likely), which
represents a large overhead since disk accesses are expensive. One can avoid this to some extent
by biasing the selection of the first choice, for example by assigning a block to the first of its
choices with room to hold it. This would greatly speed access, but also would increase collisions
(approaching the single-choice case).

5.3 Multiple-choice hashing with limited range

While multiple-choice strategies require too much overhead to be feasible, it is possible to modify
these strategies to achieve a more realistic system which can approach the load balancing capabilities
of multiple-choice hashing while dramatically reducing the expected access time. For example,
within the d = 2 Greedy strategy, the choice of the second bucket could be restricted to lie within a
small fixed-size range of buckets immediately after the first choice bucket (within a range parameter
7). Then, after the random second choice is selected, the two buckets can be located in the same
pass of the hard disk drive (thus avoiding lengthy arm seeks). Simulations indicate that, for realistic
values of n, even small values for r are sufficient to provide comparable results to general unlimited
range multiple-choice strategies, though at higher utilizations the limitations of the restricted range
become more apparent.

However, probabilistic analysis of this limited range strategy shows that reasonable ranges
cannot guarantee small bins. Rather than analyzing directly the situation that a certain bucket
receives a load of size k, let us instead examine the probability that 2k blocks choose the same two
specific choices for buckets. Call these two buckets by and b;. Clearly one of the two has load at
least k. Let us also for simplicity deal solely with the case m = n.

By Chernoff’s bounds, the probability that bucket by has at least 2k blocks choosing it first is
at most (%)21c Then, the probability that all these choose b, second is equal to (%)21c

This must be at most %, S0:

2k

(=)" < 1
2kr n
2k — 2k In(2kr) -
2k(In(2kr) — 1)

< Inn
> Inn

This implies that if r = poly(logn), then k = O(%{:ﬁg—n) is required, or the best load we can

guarantee is asymptotically identical to single-choice hashing.

5.4 Single-choice hashing with bucket windows

Another systems-focused alternative strategy involves extending the traditional single-choice hash-
ing techniques. Instead of simply using the first bucket selected randomly by a block to be placed,
examine the bucket and a few of its successors (the bucket window), and use the one with the light-
est load. This seems to require an additional operation during the disk write (since it must read
the bucket sizes before selecting one to write), but in fact in all of the above strategies, including
standard single-choice, a read operation must be performed before writing a block, to determine
whether or not the bucket still has available space. Thus the only additional cost is the small extra
rotational delay to read a few more buckets during the block read.

This strategy involves an inherent tradeoff. The larger the size of the bucket window, the greater
the utilization can be while producing fewer overflows. However, a larger bucket window incurs a
greater operational overhead when searching for a block, since more buckets need to be searched
to find the block.

The remainder of this section contains two theoretical analyses of the bucket window strategy.
The first is a simple argument that it is expected to be better than a single-choice strategy with
a larger bucket (one the size of the total size of the bucket window). The second is a proof that
for a bucket window of size o(logn), the best that can be proved is a load near that of the simple
single-choice strategy, though with a window of size O(logn) constant deviation per bucket can be
achieved with high probability.

5.4.1 Comparison to single-choice

This analysis of the strategy centers around the effects of two nearby “tall” buckets, or buckets
which are chosen as the initial hash of at least h balls each (i.e. without using a bucket combination,
bucket window, or any other hashing technique). It disregards the placements and corresponding
load induced by all other balls whose initial hash was to some other bucket as well as balls placed
after the first h to each of the tall buckets. We will compare two strategies for fixing these tall
buckets by redistributing some of their balls. In one, we will combine all buckets into fixed sets or
ranges of r buckets each, where any ball hashed to one of the r buckets is distributed evenly among
all 7 buckets (i.e., all hash targets of any of the r buckets are equivalent, essentially treating the
set as one bucket r times as large). In the other, we will examine the tall bucket and the r — 1
following buckets (the “bucket window”), and distribute each of the h balls assigned to the tall
bucket across this set uniformly. Intuitively, these strategies appear almost equivalent, where the
first strategy will be better whenever the two tall buckets are in separate ranges, and the second
will be better whenever they are in the same range. But probabilistic analysis will show a clear
preference for the second strategy, regardless of the distance between the two buckets.

We examine the relative loads imposed on the potentially affected buckets in each strategy. The
central difference between the two strategies is that if two buckets are in the same range in the
combining strategy, then they have more room to spread their elements out in the bucket window
case, while if they are in separate ranges they have more room to spread out in the fixed range
case. However, the amount of room they have to spread out in the bucket window strategy increases
as the distance between them increases. Thus, as it becomes more likely that the buckets are in
separate ranges, it also matters less since the bucket window strategy has more space.

Let the fixed range algorithm be A, and the bucket window be A,. Also let the distance
between the two buckets be d € [1, (r — 1)](€ Z). If the distance is 0 or at least r (where distance
is measured in the number of buckets - two sequential buckets are at distance 1), then the two
strategies are equivalent - at distance 0 they have the same space of r buckets, and at distance at

10

least r they cannot affect each other in either strategy.
If the two buckets are in the same range, then the cost to Ay is defined as %, since there is a

load of 2h being produced by the two tall buckets which must be spread out over r buckets. The
cost to A,, is then r%r—hd, since the separation of d units implies that the two bucket windows overlap

by r — d, or that the total space covered is 2r — (r — d) = r + d. Now, the probability of this
occurring is determined by the location within the fixed range of the first tall bucket’s position.
There are r — d positions within the r positions of the range for which the second bucket will be

inside the range, and thus the probability of this situation occurring is r—d

T
If the two buckets are in different ranges, then the cost to Ay is %, since each tall bucket can
spread its load over r buckets independently of the other. The cost to A,, is still 13_—%. This situation

has probability g. These two facts lead us to compute:

C(Ay) r—d r+d d r+d
E[C(AZ,)] - r 7 +;' 2r
2@ dr+d?
N 72 272
o2 —2d’ - dr+ d?
- 272
@
N 2r 2r2
> 1

The last inequality holds because d/r < 1. This indicates that for any separation d, one would
expect the bucket window algorithm to perform better than the fixed range approach.

5.4.2 Chernoff tail bounds

Let us consider two sequential fixed ranges of r buckets, ¢ and i+ 1. Let S; be the number of blocks
which select a bucket within range ¢ as their first choice. If S; is at least rc for some value ¢ to be
determined, then some bucket in 7 or 4 4+ 1 has load at least §, since there are at least rc blocks
to distribute across 2r buckets. S; is binomially distributed, and can be bounded by Chernoft’s

bounds, with mean r (assume m = n):

Pr[S; > rc] < (e(;l)r _ eir (E)cr

This needs to be upper bounded by % to ensure that no bucket has load § - this condition is

far from sufficient, but is certainly necessary. Thus:

1 cr 1

_(E) < =

e’ \c - n

e\c¢r e’

O

c n
cr—crlne < r—Inn

crlnc—c+r > lnn

Assuming that = o(logn), this requires crlnc = O(logn), which means ¢ = O(]ﬁg%gni).

Thus the bucket window strategy offers no significant asymptotic improvement over the sing
choice strategy for small ranges, and certainly is not comparable to the unrestricted multiple-choice
strategy.

e_

11

Note that a range of r = O(logn) is sufficient to achieve excellent results (constant deviation),
while in the multiple-choice limited range strategy this is not the case; in fact, even arbitrary range
multiple-choice strategies cannot perform as well unless the number of choices is allowed to be
larger than a constant.

6 Simulation Results

Simulation results can be found in figures 5, 6, 7, and 8; note that all figures are in log scale.
All graphs measure the number of blocks that overflow corresponding to simulations run with a
varying utilization. The bucket size is 32, and the number of potential blocks in the system is
222 — 4194304. This is the total number of positions available for blocks in the system; fixed
numbers were used to focus the simulations on the relationships between the algorithms rather
than attempting to achieve specific numerical results. Numbers in the range [0,4194303] are chosen
independently with probability equal to the desired utilization to produce the input set of blocks.
This is a small input space, but, assuming the hash function is good enough, results are equivalent
to using a larger input space with any means deterministic or random of selecting blocks as input.
Simulations were run with a fixed number of possible blocks varying in utilization to better represent
the different situations possible at a single hard disk drive; the graphs demonstrate the levels of
utilization possible in each strategy without allowing more than 1% of the blocks to overflow.

A new heuristic was added in the simulations. Blocks were allowed to select from their choice
bins according to the rule “first-fit”; in other words, as long as the first choice bucket had any space
left, blocks were placed there, without examining alternate choice buckets. This was applied to
bucket windowing by placing the block in the first bucket in the window with any available space.
This notion is introduced to attempt to reduce the expected access time to blocks by biasing them
towards their first choice. This of course increases the number of overflows produced in the system
as a side effect.

The first-fit-only graph studies the number of overflows for the candidate algorithms when using
the first-fit metric. It uses a single sample parameter each for the limited range and bucket window
strategies. It also includes for comparison the performance of single-choice hashing with comparable
bucket sizes. Note that both algorithms outperform the corresponding single-choice results signif-
icantly, though the performance curve shadows that of the single-choice (making the algorithmic
improvements less significant); this is intuitively supported since the system will not even use the
algorithmic modifications until it nears capacity, at which point the system is already unbalanced.
Also worthy of note is that when first-fit is used, the bucket window strategy greatly outperforms
even the general multiple choice strategy; this indicates that the bucket window strategy is far more
capable of repairing an unbalanced allocation than limited range multiple choice.

The first-fit heuristic allows the number of second choice blocks (those successfully placed in
the second random choice in multiple choice hashing or a later bucket in the bucket window) to
be reduced to 2-5% in both limited range multiple choice and bucket windowing, as opposed to
approximately 33% in multiple choice and 45% in bucket windowing (for the other three positions
combined) when unrestricted. The system parameters would need to be considered to determine
whether the resulting increase in overflows (which is quite considerable) is tolerable.

The no-first-fit graph shows that limited range with a range of 30 well outperforms a bucket
window strategy of size 4, but with comparable ranges (limited range 4 actually examines 5 buckets
total, which gives it more than the bucket window) the bucket windowing strategy is superior.
However, the closeness of the two curves of similar ranged bucket windowing and limited range
multiple choice suggests that the most important parameter is not which of these strategies to use

12

but rather how many additional buckets are allowed to be examined (at least when the ranges are
small). Both the strategies use the additional space in a manner far superior to simply enlarging
the buckets by the same amount.

The limited range multiple choice and bucket windowing graphs note the affects of modifying
the range parameters in the two strategies, both with and without first-fit; they also demonstrate
the cost incurred by using the first-fit heuristic, as much higher utilizations are possible with the
same number of overflows without first-fit.

An observation worthy of note is that the variance in the simulation results across different
executions of the same test was extremely small. This is due to the aggregate nature of the
performance metric - while individual bin sizes may vary widely, the overflow amount measures the
ability of a large number of bins to be significantly over their expected load, enough to exceed their
capacity.

It should be clear that these techniques allow overflows to be kept quite small, even at high
utilizations, with little algorithmic overhead.

7 Conclusion

The placement strategies described in this paper achieve the stated goals of low fragmentation,
small overhead, efficient operation, and maintaining sufficient locality. The new hashing systems
introduced are capable of greatly reducing the number of overflows even at very high utilizations.
By utilizing additional space in a more intelligent way (rather than simply enlarging output buck-
ets), the balancing abilities of traditional multiple-choice hashing can be approached with more
practical algorithms which can maintain low expected block access time. While neither multiple-
choice limited range hashing nor single-choice with bucket windows achieve the desired theoretical
performance guarantees (such as those for general multiple-choice hashing), both perform very well
in simulations and are quite capable of serving as adequate random mappings for the proposed
allocation system.

For the purposes of single disk allocation, only strategies using the first-fit heuristic provide
sufficient performance. In this application 95%-97% of blocks must be found in the first bucket
probed. Both limited range multiple choice hashing and bucket windowing are capable of this at
over 90% utilization (with first-fit). The memory cache is capable of managing approximately 10000
overflows. Both limits are met by bucket windowing with a window of size 5 at up to 90% utilization
(with second choices under 4%). Limited range multiple choice hashing cannot compete when the
first-fit heuristic is used, and produces unacceptable overflow at the lowest tested utilization even
with a large range. For applications requiring extremely small overflows, or for applications with
different latency parameters, limited range multiple choice hashing and no first-fit are also quite
practical.

8 Acknowledgments

We wish to thank Dylan Adams for much initial work on the simulator.

13

Overflows (out of 4194304 possible blocks)

1let05

-7 .- Single, 128

Utilization %

Figure 5: First-fit; greedy multiple-choice, lim-
ited range MC with range = 30, bucket window
of size = 4, single choice with bucket size = 64,
single choice with bucket size 128

Overflows (out of 4194304 possible blocks)

1let05

Single Choice

Utilization %
90.00 92.00 94.00 96.00

Figure 6: No first-fit; greedy multiple choice,
limited range MC with range = 30 and 4,
bucket window of size = 4, single choice with
bucket size = 128

Overflows (out of 4194304 possible blocks)

let05

5 AN G Firsi-fit4

1e+00

Utilization %

Figure 7: Limited range multiple choice, nor-
mal (90-98% utilization) and first-fit (84-92%
utilization), with ranges 100, 30, 7, 4

Overflows (out of 4194304 possible blocks)

1e+05

First-fit 3

1e+00

Utilization %

Figure 8: Bucket windowing, normal (90-98%
utilization) and first-fit (84-92% utilization),
with window sizes 3, 4, 5

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

8]
[9]

[10]

[11]

[12]

[13]

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM Journal
on Computing, 29(1):180-200, Sept. 1999. A preliminary version appeared in Proceedings of
the 26th Annual ACM Symposium on Theory of Computing, pages 593—602, Montreal, Quebec,
Canada, May 23-25, 1994. ACM Press, New York, NY.

P. Berenbrink, A. Czumaj, A. Steger, and B. Voicking. Balanced allocations: The heavily
loaded case. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
pages 745-754, Portland, OR, May 21-23, 2000. ACM Press, New York, NY.

A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient, distributed data placement strategies
for storage area networks. In Proceedings of the 12th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 119-128, 2000.

Cole, Frieze, Maggs, Mitzenmacher, Richa, Sitaraman, and Upfal. On balls and bins with
deletions. In Proceedings of the RANDOM, pages 145-158, 1998.

M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two random choices: A
survey of techniques and results.

M. Mitzenmacher and B. Vocking. The asymptotics of selecting the shortest of two, improved.
In Proceedings of the 87th Allerton Conference on Communication, Control, and Computin,
Urbana, IL, 1999.

M. Raab and A. Steger. “Balls into bins” — a simple and tight analysis. In M. Luby, J. Rolim,
and M. Serna, editors, Proceedings of the 2nd International Workshop on Randomization and
Approxzimation Techniques in Computer Science, Lecture Notes in Computer Science 1518,
pages 159-170, Barcelona, Spain, October 8-10, 1998. Springer-Verlag, Berlin.

J. Renato. Design of the rio (randomized i/o) storage server.

P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In Proceed-
ings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 849-858, San
Francisco, CA, January 9-11, 2000. STAM, Philadelphia, PA.

J. R. Santos, R. Muntz, and B. Ribeiro-Neto. Comparing random data allocation and data
striping in multimedia servers. In Measurement and Modeling of Computer Systems, pages
44-55, 2000.

C. Scheideler. Probabilistic Methods for Coordination Problems. University of Paderborn, 2000.

B. Vocking. How asymetry helps load balancing. In Proceedings of the 40th IEEE Symposium
on Foundations of Computer Science, pages 131-141, New York City, NY, October 17-19,
1999. ITEEE Computer Society Press, Los Alamitos, CA.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The hp autoraid hierarchical storage system.
ACM Transactions on Computer Systems, 1:108-136, 1996.

15

