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Abstract

Dynamic translation is a general purpose tool used for instrumenting programs at run time. Many current translators
perform substantial rewriting during translation in an attempt to reduce execution time. When dynamic translation is used
as a ubiquitous policy enforcement mechanism, the majority of program executions have no dominating inner loop that
can be used to amortize the cost of translation. Even under more favorable usage assumptions, our measurements show
that such optimizations offer no significant benefit in most cases. A simpler, more maintainable, adaptable, and smaller
translator may be preferable to more complicated designs.

In this paper, we present HDTrans, a light-weight IA-32 to IA-32 binary translation system that uses some simple and
effective translation techniques in combination with established trace linearization and code caching optimizations. We
also present an evaluation of translation overhead under non-ideal conditions, showing that conventional benchmarks do
not provide a good prediction of translation overhead when used pervasively.

A further contribution of this paper is an analysis of the effectiveness of post-compile static pre-translation techniques
for overhead reduction. Our results indicate that static pre-translation is effective only when expensive instrumentation
or optimization is performed, and that efficient reload of pre-translated code incurs a substantial execution-time penalty.

1 Introduction
One of the notable developments over the last few years has
been the use of dynamic binary translation to address numer-
ous run time instrumentation and compatibility challenges.
Dynamo [1] and Mojo [3] perform run time optimization to
improve the performance of native binaries. Valgrind [10] uses
sophisticated dynamic translation methods to perform heavy-
weight dynamic binary analysis which can be used for compre-
hensive performance measurements, profiling, memory analy-
sis, and debugging. Shade [5] uses dynamic translation for
high-performance instruction set simulation. VMWare [6]
uses selective dynamic translation to achieve full machine vir-
tualization. DynamoRIO [2] and Strata [12] provide an infra-
structure for customizable instrumentation and optimization.
Pin [9] is a dynamic binary instrumentation tool that provides
a high level API for run time instrumentation of programs that
can be used towards computer architecture research and ed-
ucation. Program Shepherding [7] uses dynamic translation
to monitor control flow transfers in order to enforce security
policies on program execution.

Many current translator implementations involve complex
translations to generate an optimized target code cache. The
rationale for doing so is the expectation that most of the exe-
cution time is spent in the code cache, and hence, optimizing
it will amortize the overhead of a complex translator. This ex-
pectation is violated in programs that have low percentages of
dynamic code re-use.

The complexity of a translation system depends on the de-
gree of instrumentation required. Our experience suggests that
for most applications, a simple translator is more important
than a clever optimization strategy. When the desired instru-
mentation can be achieved at instruction granularity, a simple
translator suffices. When it cannot, the performance overhead
of dynamic instrumentation is quickly dominated by increases

in translator size and complexity. This makes ubiquitous use of
dynamic-translation infrastructures (for example, ubiquitous
program shepherding as a “drop in” mechanism for existing
systems) infeasible. In this paper, we describe and evaluate
HDTrans — a simple, high-performance light-weight IA32-
to-IA32 dynamic translator that is optimized for simplicity.

The rest of the paper is organized as follows. In section 2,
we introduce the basic translation methodology and the design
choices adopted in HDTrans. We later present the special tech-
niques we used to address some performance critical issues in
dynamic translation. In section 3, we then present comparative
performance results with existing systems using both standard
benchmarks and everyday programs. Later, in section 4, we
analyze the overheads involved in translation, and consider the
use of static-pretranslation techniques for overhead reduction
in dynamic-translators.

2 HDTrans
HDTrans is a dynamic translator for the IA-32 family that
combines a small number of new mechanisms with well-
established techniques used in existing translators.

2.1 Basic Translator
The basic mechanism of translation is well understood and ex-
plained in the literature. This section aims to present the dis-
tinctive design choices made in HDTrans, and readers inter-
ested in further explanation may refer to Dynamo [1], Walka-
bout [4], etc.

HDTrans executes in a coroutine fashion with its subject bi-
nary image. Source basic blocks (a sequence of straight-line
instructions that is “bracketed” by branches) are translated into
a basic block cache (BBCache), and a directory of all such
translated basic blocks indexed by source program counter is



maintained. Directory entries are added before the correspond-
ing block is translated to ensure that self-looping traces reuse
existing basic blocks. Translated basic blocks are never re-
moved from the BBCache. In the rare situation where the
BBCache becomes full, both the BBCache and the translation
directory are discarded and the translation process starts over.

HDTrans performs instruction-at-a-time IA32-to-IA32 bi-
nary translation. In order to minimize the overall cache foot-
print, the translator is table driven. The table embodies the
rules for decoding each instruction. It also identifies the emit-
ter function to be used in each case. Each entry in the table
occupies a single cache line, and a maximum of three entries
are visited for every instruction decoded. In the absence of any
instrumentation, a majority of instructions are translated by
copying them verbatim into the BBCache. Instructions deal-
ing with control-flow need special handling in order for the
translator to remain in control of the application. As execution
proceeds, a steady state converges rapidly on a situation where
all dynamically active basic blocks have been translated.

This approach does restrict instrumentation to instruction-
at-a-time methods, but significantly reduces the overall cost of
translation. No attempt is made to optimize the target code
cache except for trace linearization. This approach should be
seen in contrast to Valgrind [10], which builds a high level in-
termediate form to support a rich pool of instrumentation op-
tions, and Pin [9], which performs sophisticated run time opti-
mizations including optimization of the instrumentation code.

2.2 Register State
One of the important design decisions in building dynamic
translators is to decide where the definitive copy of the ap-
plication’s register state is maintained. On the Pentium, where
registers are few, there is considerable incentive to preserve
all available registers for the application’s use. Otherwise,
excessive register spills will effectively mandate a translation
strategy with intermediate code generation and register reallo-
cation. In HDTrans, since we are translating user-mode pro-
grams, we assume that the guest has a valid stack that is backed
by a general purpose page fault handler. This constraint must
be maintained in any case in order for signal handling to work.
HDTrans saves the register state whenever necessary by push-
ing it on the application stack. We ensure that HDTrans is
never observed to have changed the application stack during
the execution of the application’s instructions. Saving the
register state on the stack is also an effective way to handle
register-states of multi-threaded programs (we assume implic-
itly that two threads of control in the same application do not
examine each other’s stacks).

2.3 Direct Branches and Traces
When a basic blocks ends with an unconditional immediate
jump to a previously untranslated basic block, we elide the
jump and continue to translate destination basic block imme-
diately, so that the execution can proceed in straight line. In
the case of a call instruction, we proceed by translating the
instructions past the call instruction and not the destination
of the call. If the destination of the call has already been

translated, a jump is emitted to that basic block. Otherwise,
suitable arrangements are made (Section 2.4) so that the target
of the call is translated lazily. The translation of call in-
structions is further explained in the section on return-caching.

The above translation scheme is illustrated using the follow-
ing example. We use gcc syntax for the assembly fragments
illustrated in this paper. If the source instructions of the appli-
cation are:

add $20, %ecx
jmp $dest
...

dest: mov $30, %ecx
call $proc

next: add $4, %esp
...

The corresponding translated instructions in the BBCache will
be:

add $20, %ecx
mov $30, %ecx
push $next
jmp $<translation of proc>
add $4, %esp
...

Translation terminates when an indirect branch is encoun-
tered or when the destination of a direct jump has already
been translated. No optimization is performed, source ba-
sic block boundaries are preserved, and the translator records
a new basic block in the translation directory for mid-trace
blocks. Our goal is to form traces passively, but to reuse ex-
isting translations in preference to trace duplication. This ap-
proach is in contrast to DynamoRIO [2], which has a separate
trace cache in addition to the basic block cache and maintains
hot traces based on the Next Execution Tail [1] scheme. Mea-
surements show that the HDTrans passive trace construction
strategy commonly emits trace lengths of 4-5 basic blocks, or
between 10 and 15 instructions. The longest measured trace
was 256 basic blocks with over 1,100 instructions in the case
of gcc.

2.4 Conditional Branches, Backpatching
Translation at a conditional immediate branch proceeds by lin-
earizing the trace in a straight line, on the assumption that the
branch is not taken. If the destination of the branch is known,
a conditional jump is emitted to that translated basic block.
Otherwise, we conditionally branch to a custom emitted fixup
trampoline called the “patch block” inside the BBCache. The
patch block contains a call to the translator and notes the
address of the conditional branch and its destination. After
eventual translation of the destination, the original branch in-
struction is patched in place, so that further jumps can go di-
rectly to the destination block. Emission of patch blocks is
deferred to the end of the current trace translation, so that it
never subdivides source traces. The translator assumes that
the instruction following a conditional branch is likely to be a



basic block start, and inserts a basic block directory entry for
this instruction to suppress duplicate trace constructions.

As an example, consider the following source instruction
sequence, where ‘dest’ is not yet translated.

add $20, %ecx
this: jcc $dest

sub $20, %ecx
...

These instructions are translated as:

add $20, %ecx
jcc $pb-n
sub $20, %ecx
...
... ;<end of trace>

pb-n: call $translator
$dest
$this

After ‘dest’ is translated this sequence changes to:

add $20, %ecx
jcc $<translation-of-dest>
sub $20, %ecx
...

2.5 Indirect Branches
A decisive factor in the performance of the translated code is
the handling of indirect jumps. Since the dynamic translator
cannot know the destination of the jump at translation time,
it is necessary to emit code that performs a run time lookup
to determine the translated destination of the branch, which
is a potentially expensive operation. Many techniques have
been proposed in literature for handling this case, including
inlining of the most frequently used or recently used destina-
tion into the trace, and then emitting a comparison to ensure
correctness. HDTrans uses a simpler mechanism in which we
implement a hash-table (called the “sieve”) using a hash of the
destination address. In order to reduce register pressure and
cache pollution, the sieve is implemented using blocks of in-
structions rather than blocks of data.

An indirect jump instruction such as jmp *dest is trans-
lated as:

push *dest
jmp $sieve-dispatch-bb

The sieve-dispatch-bb is a special basic block that
computes the hash of the destination and jumps to the proper
hash bucket. We use a sieve having 2

15 buckets. The hash
computation is performed in a way that the condition codes
are not affected, as suggested in [2]:

push %ecx
mov 4(%esp), %ecx
leal 0(,%ecx,4), %ecx
movzwl %cx, %ecx
leal $sieve-table(,%ecx,2)
jmp *%ecx

The buckets of the sieve are initialized with a jump to the
translator. As the entries are added, the target of the jump
is updated to go to the corresponding hash table entry. Each
entry consists of code that checks for a possible destination
and branches on mismatch to the next entry:

mov 4(%esp), %ecx
lea -curr-src-eip(%ecx), %ecx
jecxz match
jmp $next-bucket

match: pop %ecx
leal 4(%esp), %esp
jmp $curr-translated-block

Each hash chain terminates with a fall back case that invokes
the translator to translate the destination. The sieve blocks are
built only for those indirect branches that are taken at least
once. The length of the sieve chains are observed to be 1 or 2
on an average, and are never more than 4. As a further opti-
mization, we can divide the sieve table into two sieves – one
for looking up the destination of indirect jumps and another
for indirect calls, as these destinations are mutually exclu-
sive in practice.

2.6 Return Caching
The return instruction is by far the most important form of
indirect branch in terms of dynamic frequency. However, any
attempt to optimize the call return sequence should not alter
the activation stack in a way that is detectable by the sub-
ject program. For example, some dynamic translators [11]
have proposed a scheme in which the translated return ad-
dress, rather than original code address is pushed on the stack.
This approach is incompatible with C++ exception handling,
garbage collection, or setjmp()/longjmp().

In order to efficiently implement the return instruction,
HDTrans uses a return cache. The return cache is a fixed
size D-space direct mapped hash table, indexed by a simple
hash of the destination procedure start address. The transla-
tion of a call instruction pushes the original untranslated
return address on the stack, computes the appropriate return
cache bucket, and stores the translated return address into this
return cache entry (as shown below). If the call in question
is a direct call, the return cache bucket calculation can be done
at dynamic compile time.

;; call $someProc:
push $source-ret-address
mov $post-call, ret-cache-entry
jmp $someProcTrans

post-call:
<call-postamble>

The translation of a return instruction leaves the original re-
turn address on the stack and blindly performs an indirect jump
through the return cache entry indexed by the procedure entry
point associated with the return instruction (Figure 1):

;; return from someProc:
jmp *my-return-cache-bucket
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Figure 1: Return cache control-flow.

Due to return cache collisions (which may be caused due
to recursion, for example), this method can result in mistrans-
lated returns. We rely on the fact that the only way to insert
an entry into the return cache is to execute some call in-
struction. The translator emits code following each call to
check that control has returned to the intended destination. A
comparison is done between the known static address of the
instruction following the call, and the return address left
on the stack by the return translation. If these addresses
match, then the stack pointer is incremented past the return
address, and the computation continues normally. Otherwise,
the sieve is used to locate the correct return point, exploiting
the fact that the “dispatch frame” left on the stack by the trans-
lated return instruction matches the one used for indirect
branches. The use of this fallback method has been observed
to be dynamically rare.

;; call-postamble
push %ecx
mov 4(%esp), %ecx
leal -src_ret_addr(%ecx), %ecx
jecxz equal
jmp $sieve-dispatch-bb

equal: pop %ecx
leal 4(%esp), %esp

Return cache entries are initialized with the address of the
sieve-dispatch-bb at startup. This ensures that (per-
verse) code performing a return before call works cor-
rectly.

3 Performance
3.1 Benchmark Performance
HDTrans compares favorably with the leading dynamic trans-
lation systems. Figure 2 shows the performance of HDTrans
on the SPEC INT2000 [13] benchmarks in comparison to
DynamoRIO and Pin. Benchmarks are compiled with gcc
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Figure 2: SPEC INT2000 benchmarks.

version 3.4.4 and run on a dual processor, hyperthreaded In-
tel(R) Xeon(TM) CPU 2.80GHz system with 512 KB L2 cache
and 6GB main memory, running Linux Fedora Core 3 (2.6.12-
1.1376 FC3smp kernel). All benchmarks are single-threaded.

HDTrans does not (yet) support signals or threads. The
DynamoRIO website [14] notes that DynamoRIO does not
support threads or signals reliably as well. We ran Pin without
the -mt option which is used to enable the execution of multi-
threaded programs. Also, we believe that supporting signals
that do not examine thread context can be done without a sig-
nificant overhead.

HDTrans (all optimizations enabled)
No EFLAGS avoidance
No sieve
No new bb following Jcc
No ret−cache
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Figure 3: SPEC INT2000 benchmarks with optimizations
selectively disabled.

Figure 3 shows the performance of HDTrans on SPEC
INT2000 benchmark with individual optimizations disabled
one at a time. These measurements demonstrate that the sieve
and return cache optimizations are critical, and that maximiz-
ing basic block reuse is an effective choice for indirection in-
tensive programs. The last result calls into question the previ-
ously published arguments in favor of explicit trace construc-
tion.

The performance of dynamic translation relies on Amdahl’s
law. Translator overhead can only be amortized if the majority
of a program’s execution time is spent in a small fraction of the
code. This assumption is violated when dynamic translation is



applied pervasively (e.g. as proposed in Program Shepherd-
ing [7]), where the program executions are less likely to have
a dominating inner loop. Benchmarks such as SPEC INT2000
are designed to measure the performance of inner loops, and
therefore tend to minimize translation overheads. In conse-
quence, it is doubtful that these results accurately predict the
performance of machine-level dynamic translators in produc-
tion use.

3.2 Cold Cache Translation Overheads
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Figure 4: Overhead for some cold cache benchmarks.

To evaluate the cold cache performance of HDTrans, we
measured the performance of a number of short-running pro-
grams that are dominated by startup initialization costs or in-
terpretation:

• cc1 (v 3.4.4) compiling a 390 line Huffman encoder,

• bzip2 -t on a 4KB bzip file,

• the clear command,

• the ls command on /bin,

• emacs in batch mode directed to load a file, enter a high-
lighting mode, and quit, and

• perl (v 5.8.5) run on a 200 line script that generates
random passwords

Figure 4 shows the comparative performance of HDTrans for
these benchmarks. It should be noted that recent versions of
gcc exhibit dramatically lower code reuse than the older ver-
sion used in SPEC INT2000, and consequently stress dynamic
translators much harder.

3.3 Analysis of Overhead
The overhead of dynamic translation can be divided into the
cost of translation per se and the execution overhead intro-
duced by the translation process. To isolate these effects, we
modified HDTrans to dump and reload its translation cache
and associated metadata. To perform this comparison, Linux
address space randomization is disabled. Figure 5 shows the
performance of the purely dynamic version of HDTrans and
the reloaded version for programs evaluated in the previous
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Figure 5: Overhead of HDTrans-pure and HDTrans-
reloaded for some cold cache benchmarks.

section. With the translation cache reloaded, only one or two
basic blocks are dynamically translated in the second execu-
tion. Measurement shows that the overhead of the reload it-
self is negligible. As expected, higher execution overhead is
incurred in programs having a high dynamic frequency of in-
direct control transfers, and the translation overhead is highest
for programs exhibiting the least dynamic code reuse.

3.4 Utility of Static Pretranslation
We visited several performance plateaus during the develop-
ment of HDTrans, and at each one we thought “This is it, doing
any better will require static precaching.” While static disas-
sembly of x86 code is imprecise, falsely identified basic blocks
are dynamically unreached (therefore harmless), and missing
basic blocks can be generated at runtime by the dynamic trans-
lator. For some programs, static pretranslation might provide
substantial performance gains by recognizing common com-
piler idioms (e.g. switch statements or vtable dispatch)
and eliminating the need for most patch blocks.

Using a minor variant of Kruegel et al.’s obfuscated disas-
sembly techniques [8] (we assume that a call is followed by in-
struction bytes), we have confirmed that over 98% (often more
than 99%) of the dynamically executed basic blocks can be
statically identified and pretranslated. Therefore, the reloaded
bar in Figure 5 is a reliable estimate of the performance of a
hybrid translator provided that no substantial overhead is in-
curred when loading the statically generated precache in an
unconstrained operating environment. The HDTrans source
tree includes an implementation of this pretranslation strategy.
Support for relocating reloading is currently unimplemented,
because a substantial intrinsic overhead exists in reloading.

The difficulty lies in the widespread use of address space
randomization, which implies that absolute addresses embed-
ded in the load image must be relocated when the image is
loaded. Unfortunately, each page modified during reload in-
curs a demand copy-on-write (COW) overhead. Similar over-
heads are well known in the garbage collection literature, and
have led to the abandonment of MMU-based guard pages in
modern garbage collectors.

In most cases, absolute addresses used in HDTrans emit-
ted code reside in trampoline basic blocks that are gathered at



the beginning of the basic block cache. If copy-on-write costs
could be successfully restricted to this page, relocation might
be cost effective. Unfortunately, emitting efficient position-
independent code for the call/return sequence is difficult with-
out a PC-relative memory addressing mode. The IA-32 (along
with most other architectures) does not provide such an ad-
dressing mode. The “no ret-cache” bar of Figure 3 shows the
performance impact of maintaining a precise stack without the
return cache: a 200% to 350% slowdown in execution perfor-
mance (i.e. in addition to the cost of relocation). Taken alone,
this execution overhead is significantly higher than the cost of
de novo dynamic retranslation.

Collectively, our results suggest that any static reuse strat-
egy will substantially exceed the cost of re-running HDTrans
in most cases. We therefore believe that static pretranslation
is effective only for optimization or instrumentation strategies
where the cost of translation is a dominating factor and re-
peated reuse is anticipated.

4 Conclusion
Conventional benchmarks such as SPEC INT2000 are de-
signed to evaluate inner loop performance of statically opti-
mized code. In consequence, they provide an unrealistically
favorable assessment of dynamic translator performance – the
case where translation costs are effectively irrelevant.

HDTrans shows that satisfactory performance can be
achieved using a much simpler translation strategy than has
previously been assumed. HDTrans emits code that is com-
petitive with the best existing translators, but has significantly
lower startup and translation overheads.

Source code for the HDTrans translator may be downloaded
from http://srl.cs.jhu.edu.
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