
Design of the EROS Trusted Window System

Jonathan S. Shapiro John Vanderburgh Eric Northup David Chizmadia
shap@cs.jhu.edu vandy@cs.jhu.edu digitaleric@digitale.net dchizmadia@promia.com

Systems Research Laboratory Promia, Inc.
Johns Hopkins University

Abstract

Window systems are the primary mediator of user input and output in modern computing systems. They are also
a commonly used interprocess communication mechanism. As a result, they play a key role in the enforcement
of security policies and the protection of sensitive information. A user typing a password or passphrase must
be assured that it is disclosed exclusively to the intended program. In highly secure systems, global policies
concerning information flow restrictions must be honored. Most window systems today, including X11 and
Microsoft Windows, have carried forward the presumptive trust assumptions of the Xerox Alto from which
they were conceptually derived. These assumptions are inappropriate for modern computing environments.

In this paper, we present the design of a new trusted window system for the EROS capability-based operating
system. The EROS Window System (EWS) provides robust traceability of user volition and is capable (with
extension) of enforcing mandatory access controls. The entire implementation of EWS is less than 4,500 lines,
which is a factor of ten smaller than previous trusted window systems such as Trusted X, and well within the
range of what can feasibly be evaluated for high assurance.

1 Introduction

Window systems play a key role in modern computing
systems. They serve as the primary mediator of user input
and output, and provide an interprocess communication
mechanism (cut and paste) that is widely used and uni-
versally expected. Most modern window systems trace
their conceptual ancestry to the Xerox Alto [31]. In the
Alto design, applications are presumptively friendly and
the computer display is a single-user device. A basic goal
of the Alto design was to encourage cooperation among
applications in an environment of trust. These assump-
tions and goals are inherited by both the X Window Sys-
tem [27] and Microsoft Windows. Unfortunately, these
assumptions of trust are incompatible with even minimal
standards of security.

Window systems have direct access to sensitive informa-
tion, both in the form of sensitive input (e.g. passphrases)
and timing data. They implement critical paths in support
of selected trusted applications (e.g. the login service).
They are necessarily party to the enforcement of global
information flow restrictions when systemwide manda-
tory access controls are in effect. Current designs include
shared mutable resources, which are an obvious no-no,
and provide a remarkable amount of server-side resource
used to hold client data, creating a rich field of opportu-
nity for storage denial of service. They perform opera-
tions that have high variance and observable latency, the
combination of which facilitates both timing denial of ser-
vice and covert channel construction. As a result, window
systems provide a wealth of vulnerabilities that attackers

can exploit – even in otherwise compartmentalized sys-
tems. Attention to security in their design is vital.

In the late 1980’s there was a flurry of work on com-
partmented mode workstation (CMW) implementations.
Proceeding from requirements put forward by Mitre [33],
TRW developed Trusted X, an implementation of the X
Window System suitable for multilevel secure environ-
ments based on the CMW requirements [10]. This effort
identified both major and minor design flaws in X, many
of which could not be fixed compatibly and remain issues
today. Related work at Mitre was conducted as part of the
compartmented mode workstation effort [4, 20].

The CMW effort gave essentially no attention to poten-
tially hostile actions occurring within an MLS compart-
ment. As noted by Abrams [1], this is also true of the
Trusted Computer System Evaluation Criteria [7] and (in
our opinion) the Common Criteria [14]. Viewed in light
of current-day commercial threats, this ommission seems
problematic. Defense against a scripting virus that sim-
ulates a password request prompt or creates an exces-
sive number of windows falls outside of the scope of
most compartmentation strategies; these are problems of
trusted path and discretionary control. In today’s environ-
ment, it seems optimistic to assume that two applications
in a single mandatory access control domain are mutu-
ally friendly. The mandatory policy does not object to
information moving between these two processes, but it
would be useful to ensure positive confirmation of user
intent: some identifiably authorizing action performed by
the user, such as a keystroke corresponding to a “paste”



It was an explicit goal of X Version 11 to specify
mechanism, not policy.

David Rosenthal, Inter-Client Communications
Conventions Manual [26]

Figure 1: X11 Design Philosophy

operation.

This paper presents the objectives, design, and analysis of
the EROS Window System (EWS). EWS is a new trusted
window system for the EROS capability-based operating
system. It is a “fresh start” design that provides robust
traceability of user volition and is capable (with minor ex-
tension) of enforcing mandatory access controls. Building
on the primitive mechanisms of the EROS operating sys-
tem, we have created a window system that is a factor
of ten smaller than previous trusted window systems such
as Trusted X. The implementation provides an efficient,
double-buffered display system that significantly reduces
the number of resources that must be managed by the dis-
play system, and ensures that all resources used in support
of a client session are allocated from client resources. The
implementation is under 4,500 lines of code. Future en-
hancements will include a high-performance 3D graphics
rendering pipeline comparable in performance to the di-
rect rendering [15] of X11 or Microsoft’s DirectX mech-
anism. This enhancement is not expected to significantly
increase the size of the security-enforcing code.

2 Objectives and Overview

In their extensive security review of X11, Epstein and Pis-
ciotto [9] state that “Authentication is the most obvious
security problem with X.” In today’s commercial threat
environment, this characterization seems generous. The
most obvious security problem in X is the absence of pol-
icy of any sort (Figure 1). The goal of the X11 designers
was to maximize the ability of applications to interoper-
ate, partly to promote a new vision of computer interac-
tion. In the quest for a policy-free design, even the user
is disintermediated from control. Given a request for the
content of the paste buffer from an application, there is no
way that an X server can determine whether the user has
performed any action authorizing that paste. X assumes
not only that applications are cooperative, but that their
actions reflect the volition of the user. In a world of in-
creasingly hostile applications, this trust assumption has
become an unsupportable luxury.

EWS proceeds from the diametrically opposing position:

our goal is to ensure that the user is actively in the deci-
sion loop, and complete isolation between applications is
our default. Having adopted confinement as a fundamen-
tal organizing principle within the EROS system, we are
unwilling to permit unrestricted information flow at the
window system. Our goal is to ensure that any commu-
nication between window system clients is authorized by
both the user and the applicable mandatory control policy,
and that this communication proceeds only in the direc-
tion that the user and policy indicated. Capability sys-
tems provide natural underpinnings for direct manipula-
tion, which simplifies secure user interface design [35].

That said, there is an enormous user investment in the id-
ioms of current window systems. In particular, the “cut
and paste” and “drag and drop” idioms are now univer-
sally adopted and expected. Users have become accus-
tomed to overlapping window systems, and to applica-
tions with closely coupled, render-intensive interaction
loops. Given this, we wished to create a window system
in which the “look and feel” of current usage idioms could
be largely preserved.

2.1 Principles and Goals

After reviewing the conclusions of Epstein and Piccioto,
we arrived at a list of design principles and goals for EWS:

R1. Isolation No operation performed on one
client session should be able to affect or ob-
serve state associated with other sessions – in
most cases, not even the state of subsessions.

R2. No Mutable Sharing The display server
should provide no shared mutable state to
clients.

R3. Minmize Server Resource Types The total
number of resource types managed and/or al-
located by the server should be minimized.
This is one aspect of overall complexity re-
duction.

R4. Minimize Algorithmic Complexity Many
graphics operations are complex and have
high variance. The number and complexity
of algorithms and data structures in the server
should be minimized.

R5. Restricted Communication The display
server should provide strictly limited inter-
process communication facilities. Provide
what is necessary to support current usabil-
ity idioms; nothing more.



R6. Volitional Traceability No communication
may occur between applications through the
display server unless we can demonstrate an
authorizing user action.

R7. Resource Conservatism The display server
should not enqueue either input requests or
events. Both promote resource denial of
service and covert channels. Output events
may be queued, but total output queue length
should be bounded. More generally, the
display server should operate using only
bounded resources. Dynamically allocated
resources, if any, should come from the
client.

R8. Small Size The display server should be
small enough to be evaluable. Our initial goal
was to achieve the 30,000 LOCC target of
Trusted X.

R9. Low Variance Each input event should be
delivered to exactly one recipient application,
and each operation should complete in fixed,
small time. The display server should not
multiply messages. Similarly, each incoming
request should in general have one response.
When more than one response is necessary,
the total number should be a small constant
integer.

With three exceptions, we were able to achieve these ob-
jectives:

1. Clipboard interaction establishes a temporary uni-
directional communication channel. It necessarily
involves notification of both sides by the display
server, which is a small multiplication of messages
(and therefore violates R7).

2. Our design supports hierarchical client subsessions.
This hierarchy expresses visual containment only;
subsessions are fully isolated from their parent ses-
sions for communication purposes with one excep-
tion: destruction of a session implies destruction of
all descendant subsessions (violates R1).

3. Window structures are dynamically allocated using
display server memory (violates R5). A quota sys-
tem is needed to limit communication achieved by
exhausing the total number of available server win-
dow structures. A quota of this sort will also limit
attacks that operate by creating large numbers of
windows. This has not yet been implemented.

2.2 Design Overview

The functions of a display server can be divided into five
main categories:

1. Input processing, including events and client re-
quests

2. Rendering and display update.

3. Interprocess communication (cut and paste).

4. Trusted user interaction and feedback, which in-
cludes window decorations, labeling, and trusted
path management.

5. Isolation support.

We will discuss how each of these is approached in EWS
in the sections that follow, and then examine how a variety
of security concerns are addressed by the design.

As a capability system, EROS is object-based. In conse-
quence, EWS is an “object server,” and requests are per-
formed by synchronously invoking operating system pro-
tected capabilities. It has become conventional to speak
of a server that responds to interprocess procedure calls in
this fashion as an “RPC Server.” We emphasize that all in-
terprocess communications in EWS are local remote pro-
cedure calls [5]. The EROS capability invocation mecha-
nism [29] provides a high-performance transport for such
invocations. For reasons that will become clear below, the
synchrony of these invocations is not a bottleneck to dis-
play performance.

The EWS display server does not directly implement re-
mote connection or cryptographic transport layer pro-
tection. Both are cleanly separable functions that have
generic utility for many applications. There is no rea-
son that the display system should duplicate this function
when it can be satisfactorily implemented in a separably
assurable component. Cox et al. [6] propose a compelling
architecture for separating transport security and key man-
agement from applications.

The display server also omits authentication functional-
ity. In a capability system posession of a capability is a
necessary and sufficient proof of authority to perform the
operations invokable through that capability. In the con-
text of EWS, a client either possesses a Session capa-
bility or they do not, and distribution of capabilities is a
separable problem. User accounts are created with an ini-
tial desktop session that can be detached and reattached
by the login subsystem. Responsibility for subsession



Client

Client

Client

Server
Display

Kbd
Helper

Helper
Mouse

Figure 2: EWS Components

creation initially lies with the user’s primary “shell.” In
a multilevel secure system, this shell would be a trusted
application have responsibility for creating compartments
and associating security labels with the subordinate Ses-
sion capabilities that it grants to applications within these
compartments.

3 Input Processing

In the EWS design, the hardware frame buffer and hard-
ware input devices are “owned” by the display server pro-
cess (Figure 2). Each input device has an associated pro-
cess that blocks on that device waiting for a hardware-
level input event to occur. This event is reprocessed into
canonical form by the helper process, and the helper pro-
cess then invokes the display server to “post” the event
using a synchronous RPC operation. From the display
server perspective, all interactions arrive as remote pro-
cedure calls from some process. Requests from device
helpers and requests from generic clients arrive on distin-
guishable interfaces by virtue of the fact that the associ-
ated RPC invocations are performed on distinct capabili-
ties.

In contrast to many other display servers, incoming re-
quests are generally not queued by the display server.
Each is processed immediately and enqueued on the out-
bound event queue of the receiving client. In the case of
mouse events, the events are delivered to the client ses-
sion owning the window in which the event occurred. A
MouseDown event causes all subsequent mouse events
until the corresponding MouseUp to be delivered to the
window in which the MouseDown occurred (but see the
discussion of “drag and drop” in Section 6). In-order pro-

cessing imposes three constraints on the display server:

1. Requests must be “prompt,” by which we mean
that their completion must not involve any opera-
tion that might be blocked pending the completion
of some other request. An acceptable exception to
this rule is requests that explicitly request to block.

As discussed by Mercer [18], blocking or queueing
requests results in priority inversion, which in turn
creates a covert signalling opportunity.

2. Requests must be low latency.

Requests executed by the server run under a differ-
ent schedule than that of their client. Their latency
therefore can be seen as a source of variance in real-
time context switch latency. Given the design of the
EWS display server, it is more effective to establish
a small upper bound on request latency than to at-
tempt priority queueing solutions that might require
a operating system support for multilevel schedul-
ing.

3. Requests should not incur large variance in process-
ing latency. Variance of this form can be exploited
for both resource denial of service and covert sig-
nalling.

While the display server does not enqueue requests in gen-
eral, it does perform queueing in connection with client-
requested rendevous and client event delivery. When a
client issues a WaitMouseEvent request, the server checks
the per-client-session list of undelivered events (which is
bounded). If one exists, it is returned, otherwise the client
request is queued. EROS provides an operation, RETRY,
that allows the server to redirect the client to a kernel stall
queue whose wakeup is controlled by the display server.
At a later time, the desired input event will cause this
client to be awakened, whereupon it will reissue its re-
quest.

The difference between RETRY-based queueing and
application-level queueing is subtle but significant. Be-
cause clients queued using RETRY are blocked on a ker-
nel queue, their reactivation honors the scheduling policy
of the operating system. Application level queue imple-
mentations, including the request dispatch queue of X11,
generally do not have access to OS-level priority informa-
tion. Even if they did, dynamic adjustments to priority
cannot safely be revealed to such applications.1 EROS di-
rectly exposes the operating system queueing mechanism

1 Revealing dynamic reprioritization supports efficient covert channel
construction.



Session [parent]

Window

SessionCreator

Session [child]

Figure 3: Nested Sessions

via a capability-protected interface and provides opera-
tions that allow the display server to exploit it for queue-
ing purposes.

4 Sessions

Sessions serve both as the means by which windows are
created and as the unit of containment for mandatory ac-
cess controls. Sessions are hierarchical. A top-level appli-
cation running within one session can implement its own
mandatory control policy within that particular session if
desired. From a security standpoint, this is primarily use-
ful for debugging, but it also supports separation of con-
cerns. While the manager can ensure that the communi-
cation activity of a subordinate application across session
boundaries is restricted, the manager is not able to observe
the internal events and actions of that application.

4.1 The Session/Window Hierarchy

EWS associates each window with a unique client ses-
sion. Every EWS window is created by performing a
CreateWindow operation on some Session capability.
Every session has an associated containing window, and
the windows created using that Session capability are
created as child windows of the session’s parent window.
Client sessions are hierarchical: having created a window
W , the holder of a Session capability can create a new
SessionCreator capability whose parent window is
W . This new SessionCreator can be provided to
newly instantiated applications, and effectively defines the
context of the root window with respect to that applica-
tion. The SessionCreator can be used by the sub-
ortinate application to create new Session capabilities
(Figure 3).

Operations in one session are not observable by other ses-
sions – not even by parent sessions. Input events are de-
livered to the owning session of the window in which they

occur. The hierarchical session mechanism allows us to
construct graphical shells that appear to contain their ap-
plications. Interactions with these client applications are
not be observable by the shell.

The intermediate SessionCreator provides a mecha-
nism for validating isolation. The receiving client is able
to perform a test on the SessionCreator capability
verifying that it is really a capability to the display server.
The client is then assured that sessions created using this
SessionCreator are exclusively held by the client,
and cannot be spied on by the owner of the parent window.
Similarly, since the parent window owner never possesses
the Session capability, the parent cannot create windows
that might attempt to deceive input processing directed to
the client. As seen by the user, the resulting window struc-
ture appears entirely normal (Figure 4).2

4.2 Mandatory Controls

While EWS does not currently implement mandatory ac-
cess control, the session system has been designed with
mandatory controls in mind. The unit of mandatory con-
trol labeling is the session. Communication operations be-
tween two windows are permitted only if a label-checking
predicate indicates that the communication is permitted.
At present, we have implemente only the trivial predicate
that returns true in response to all requests. This amounts
to an entirely discretionary control policy.

However, the access predicate function need not be im-
plemented in the window server. If provided by a trusted
source – either at startup or statically at system design
time – an independent process can implement the manda-
tory control predicate. This allows the same mandatory
control agent to be used by many subsystems, and iso-
lates the two implementations for assurance purposes. It
also permits different subsystems to implement different
mandatory access control policies within their respective
compartments. Our intended usage model is that the top-
level “shell” is a trusted agent (it must be, since it is part
of the trusted path), and this shell is therefore permitted to
specify a mandatory control agent and a label when cre-
ating application sessions. The EROS IPC mechanism is
fast enough to make such an external access control agent
practical.

Because EROS is persistent, there is no need to reestablish
these session relationships each time the user logs in. In-
stead, each user account executes an independent copy of

2 We have not yet determined how best to display multilevel labeling.
Any labels of this sort would certainly depart from current user ex-
pectations.



Figure 4: Windows in Multiple Sessions.

the entire window system. At login time, the login agent
connects the per-user window system to the frame buffer
and hardware input devices. On logout, these connections
are severed.

5 Rendering

In order to reduce the complexity of the server, EWS im-
plements drawing operations in the client rather than the
server. This is also motivated by issues of variance. In
the presence of clipping, operations such as DrawPoly-
gon may involve several orders of magnitude more pro-
cessing than line drawing. Further, in the absence of
“backing store,” server-side drawing necessitates that up-
date notices be sent from the display to the client when
portions of its windows are revealed. It is usually more
space-efficient to have the application redraw than to save
the bits, and memory was precious on early workstations.
One hazard of this design is that a client can manipulate
the visibility of its windows so as to exploit expose events
as a signalling channel. A second hazard is that delivering
these expose events imposes significant execution costs on
the display server.

To simplify the server, we initially considered restricting
the client to constructing complex structures using suc-
cessive DrawTriangle commands following the logic of
OpenGL [28], but abandoned this approach when a faster
and simpler method became apparent: shared memory.

EWS uses shared memory mappings between client and
server to represent window state. When a client wishes to
create a window, it supplies to the display server a read-
only shared memory region containing a bitmap. The dis-
play server maps this shared region, and subsequently per-
forms bitblt operations to transfer portions of the bitmap
to the physical display. The client renders directly into
the bitmap, and advises the server when changes have
occurred by issueing an UpdateRectangle request to the
server. Note that this reverses the flow of traditional up-
date notification, and eliminates the channel associated
with X11 update notices. It also permits the server to
redraw the frame buffer at login time without communi-
cating to the clients. The resulting design is conceptually
similar to the Apple Quartz architecture [3], and can be
extended to encompass the high performance 3D pipeline
features of Quartz Extreme. A side benefit of client-side
rendering is that the server is no longer responsible for
font handling. The EWS display server contains a single,
compiled-in font that is used for title bars. This allows us
to use bitblt for window titles without incorporating the
complexity of a complete font rendering system into the
server.

Given the underlying EROS primitives, it is possible for
the client to rescind the shared memory region without
notice to the display server. This may occur out of mal-
ice or because the client’s storage is revoked for reasons
beyond its immediate control. The display server bitblt
routine is the only routine in the display server that reads
the client memory region. It is wrapped by an exception
handling catch block. In the event of an invalid memory
reference, the display server assumes that the client has
reneged on its entire interaction contract and rescinds that
client session.

Note that the shared mapping contract ensures that a given
client can detect at most one bitblt operation performed
by the display server, and only by using a mechanism that
causes the client session to be severed.

5.1 Invisible Windows

To support isolation in nested client sessions, EWS pro-
vides restricted support for invisible windows. An invisi-
ble window has no backing bitmap, and is not a candidate
for input events. In order to receive input, a window must
be visible. The role of an invisible window is to provide
a coordinate space that contains a subordinate client ses-
sion.

We note that restricting invisible windows does not en-
tirely resolve problems of event hijacking. Pragmatically,



there is no difference in appearance between an invisi-
ble window and a borderless visible window all of whose
pixels have fully or nearly transparent alpha values. At
present, EWS does not support borderless top-level win-
dows. This mitigates, but does not eliminate, the problem
of alpha transparency.

6 Interprocess Communication

Conventional window systems handle cut and paste in-
teractions using a broadcast communication mechanism.
When a user performs a “cut” operation, the application
performing the cut claims ownership of the cut buffer by
sending a message to the display server. The server re-
transmits this notification to all clients who have regis-
tered an interest in clipboard notifications. This approach,
and the security issues that arise from it, are well docu-
mented [20]. In EWS, no events are transmitted to the
destination until the user performs a “paste” action, and
then only if the communication is permitted by applicable
mandatory access controls.

Tying the server paste logic back to a clearly identifiable
user action is necessary to limit certain types of covert
communication. In the absence of a traceable user ac-
tion, any client could claim that a paste had occurred at
any time. Cut actions are similarly hazardous, because
a hostile client could interfere with permitted communi-
cation by falsifying cut events. Collectively, these con-
cerns motivate a desire to make “paste” into a traceable
atomic action. For keyboard-initiated cut or paste (e.g.
Control-V), traceability is not a significant challenge. The
server maintains a key table indicating which well-known
keystrokes authorize cut and paste actions. The drag and
drop protocol similarly has clearly identifiable interaction
events.

Mouse-initiated cut and paste operations are trickier, be-
cause there is no simple way to relate mouse actions to
application claims that a cut or paste has been performed.
We considered moving menu management into the dis-
play server, but felt that this would both complicate the
display server and unnecessarily restrict application de-
signers. Further, it would require significant changes in
existing graphical toolkits and would therefore present an
impediment to portability.

6.1 Traceable Cut and Paste

EWS resolves these problems by introducing a new type
of invisible window. We require that the visible regions

conveying cut and paste authority be identified by the ap-
plication. The cut and paste windows accept no events,
but clicks “passing through” these windows result in clip-
board authorization. For each of these special windows
there is a distinguished standard (server defined) cursor
used to indicate when the mouse is above these regions.
When a MouseUp event occurs within one of these spe-
cial windows, the display server knows that an authorizing
user action has occurred. To ensure positive user feed-
back, the server will not perform a cut or paste operation
unless the distinguished cursor has been visible for a min-
imum amount of time. This prevents unintended cut or
paste actions that might result from randomized modifica-
tions of the window positions, but allows the application
to simulate multiple active regions by relocating the active
region to fall under the mouse as the mouse moves.

Note that both the “cut” and the “paste” operation require
tracing. The user must know both where the data is com-
ing from and where the data is going to. The EWS display
server keeps a record of which windows own the cut and
paste contexts at any given time.

6.2 Drag and Drop

In general, the EWS design avoids situations where one
client gets notified of interaction sequences associated
with another. This was the motivation for directing mouse
sequences beginning with a MouseDown and ending with
a MouseUp to the MouseDown window.

There is one widely accepted user idiom that conflicts
with this handling of mouse events: drag and drop. We
have resolved this by providing direct support in the dis-
play server. At any time after receiving a MouseDown
followed by a MouseMove, the origin client window can
optionally inform the display server that this mouse se-
quence is a drag action. In that case, subsequent Mouse-
Move events may be delivered to other windows in the
form of DragOver events, and the final MouseUp event
(which completes the drag and drop idiom) is delivered to
both the originating and the destination window.

Two points should be noted here with regard to covert
channels and multilevel security:

• The display server is aware that the drag and drop
idiom is a precursor step to an act of communica-
tion. DragOver and MouseUp events are delivered
to the window under the mouse only if that window
would be permitted to receive the data transfer im-
plied by the drag and drop idiom.



• DragOver events are not a significant covert chan-
nel, because they are limited by the rate of user in-
put.

6.3 MLS Format Negotiation

In MLS systems, a problem with both “cut and paste” and
“drag and drop” can arise from format negotiation. The
client is prepared to provide some number of different for-
mats, but does not wish to render all of them because most
of them will not be used. The recipient has a (hopefully
intersecting) set of formats that it wishes to receive. At a
minimum, this set includes the native format (e.g. so that
the drawing can be transferred back to the original ap-
plication for subsequent editing) and at least one common
format that the recipient can render. The usual approach to
negotiating formats is that the sender sends a list of trans-
missable formats and the recipient replies with the subset
that it wants. This is acceptable in a single-compartment
environment, but in an MLS environment, this downward
communication is not permitted.

An elegant way of eliminating the downward communica-
tion problem is feasible in systems that, like EROS, pro-
vide a confinement mechanism [17, 30]. The EROS oper-
ating system provides a utility service called a constructor
that instantiates new programs. Among the services pro-
vided by the constructor are the ability to verify that newly
instantiated programs created by that constructor have no
outward communication channels. Building on this this
utility, we can divide the problem into two parts: (1) trans-
mitting the singleton “native” format of the sender and (2)
transmitting a set of confined converters that know how to
translate from this native format to other formats that the
client knows how to produce.

The main problem with transmitting the memory region
containing the singleton native format is durability. The
memory region containing the native format material will
be needed for an unbounded amount of time, and a re-
cipient in a higher-level compartment is not permitted to
inform the sender in a lower-level compartment that it is
done with the data. Our solution is to require every sender
to supply a constructor for initially empty, confined mem-
ory regions that are built from sender storage. The native
format is serialized to this region, the region is frozen (to
prevent further modification by either party), and a capa-
bility to it is transferred to the recipient. The recipient is
hazarded by the fact that the sender can reclaim the stor-
age at any time. A recipient wishing to retain the memory
region for any length of time is therefore well-motivated
to copy its content into a recipient-supplied memory re-
gion. In the current implementation, the sender can detect

the deallocation of the memory region by the receiver and
can use observation of deallocation latency for signalling
purposes.3

Unfortunately, we cannot simply transfer a vector of con-
structor capabilities for the converter programs. While
the display server could verify that each member capabil-
ity is a leak-free constructor capability, the sender could
subsequently alter some vector element to be a capability
to be something else. Instead, we have the sender trans-
mit a constructor to a single, confined conversion agent.
The conversion agent can be asked for the set of formats
it knows how to produce and can then be asked to pro-
duce each desired format in turn. This is most easily im-
plemented by having each converter be a separately con-
structable utility application. A hidden advantage in this
design is that the storage needed to perform the conversion
is provided by the recipient rather than the sender. Note
that all the constructors involved are created at the time
the application is installed. No paste-time instantiation of
converters is required.

The final cut and paste transfer protocol, including format
negotiation, goes as follows:

1. The display server instantiates a new memory re-
gion using the region constructor supplied by the
sender. It provides the resulting region capability to
the sender.

2. The sender writes its native paste format to the new
memory region and informs the display server when
it has completed doing so. During this step, it also
provides a capability to the converter constructor.

3. The display server now “freezes” the resulting
memory region, preventing either sender or receiver
from performing further modifications.

4. The display server now provides both the native
memory region capability and the capability to the
converter constructor to the recipient.

The resulting cut and paste interaction supports full for-
mat negotiation with no downward channel.

3 To limit this hazard, we will shortly introduce a secure storage ex-
change operation by which ownership of the storage is transferred to
the recipient at the time of the paste operation and the sender imme-
diately sees their free resource pool restored. Secure resource inter-
change of this form is generically useful in many other circumstances.



7 User Interaction

Because the window system is the primary mediator of
user input, there are certain operations users perform that
it must assure. Most of these can be viewed as trusted path
issues, and we will consider three here: title bars, window
labeling, and pass phrase entry.

7.1 The Title Bar

The title bar problem is a problem of control: does “min-
imize” mean “inform the application that we would like
to minimize”, or does it mean “tell the application that
we have minimized it?” Indeed, should we tell the appli-
cation of such actions at all? The decision matters pri-
marily because it determines who is responsible for ren-
dering and interpreting the title bar. Our policy in EWS is
that these functions are directives rather than requests, and
in consequence that the display server must handle these
functions. In the work reported here, title bar and border
rendering are performed by the display server.

A second concern with the title bar is the problem of font
forgery. If applications are permitted to set the title bar
font, they are in a position to alter the information dis-
played. In EWS, title display is managed by the display
server using a fixed, compiled-in font. In a production im-
plementation, we would probably allow the user to select
from a number of predefined fonts using a privileged ap-
plication, but eliminating the need to render fonts within
the display server provided a significant reduction of code.

7.2 Window Labeling

In a multilevel secure environment, window security la-
bels are required, and the requirements specified for Com-
partmented Mode Workstations [33] are generally taken
to be definitive. Unfortunately, these requirements are in-
complete. There is no label that the display server can
apply on a window border that cannot be visually forged
by a client. Using alpha blending to “dim down” non-
focus windows or identify trusted windows is insufficient:
an application can implement a visibly indistinguishable
child window and dim it’s own primary window using the
same algorithm.

The EWS display server defeats this attack by promi-
nently featuring the border of the focus window using a
bright color while dimming non-focus windows. A bright
border color is chosen because dimming of darker col-
ors using alpha blending is less easily noticed by the eye.

Separately, the EWS display server reserves a band at the
bottom of the display that is used to provide labeling feed-
back.

7.3 Pass Phrase Entry

Pass phrases present a particular challenge in a windowed
environment. Because the input is inherently sensitive, it
is important for the user to know that they are providing it
to the intended application.

Because EROS is a capability system, many operations
that initially appear to require trusted path interaction do
not. For example, there is no need for a trusted path to
support a trusted SaveAs agent. The protection in the
SaveAs case devolves from the fact that only the SaveAs
agent holds a capability to the user’s file system. An ap-
plication might forge the appearance of a SaveAs dialog,
but cannot forge possession of the necessary file system
capability.

When the “protection by guardianship” design pattern
is widely applied, the only remaining requirements for
trusted path interactions arise in three cases:

• Password prompts

• Cryptographic key pass phrases

• Login authentication

This list is small enough and specialized enough that it
is reasonable to declare that these components must be
trusted subsystems. A client application may indepen-
dently instantiate many copies of the trusted password val-
idator, but the interaction between client and validator is
restricted: the client supplies a user name and the valida-
tor returns true or false depending on whether the user
typed the correct password. Similarly, there may be many
instantiations of our equivalent to Factotum [6], but none
of these reveal decrypted cryptographic key bits to their
client applications.

In the context of a capability-based system, it appears pos-
sible to impose the restriction that all trusted paths are
connections between the display and a small number of
trusted applications. If these applications are trusted, then
in particular they can be trusted to identify themselves
honestly. We have therefore resolved the trusted path
problem in EWS by providing a distinguished “trusted
client session” interface. A trusted client session is one
whose client is a trusted application. It otherwise im-
plements the same operations as a normal client session.



When a window associated with a trusted client session is
active, all other windows are overlayed with a red alpha-
blended overlay, and the reserved labeling region at the
bottom of the display is distinctively marked.

8 Vulnerability Analysis

The vulnerability of the EROS Window System is drasti-
cally smaller than that of X11 or Trusted X as the result
of four architectural decisions:

• The removal of general rendering responsibility
from the display server. Our server implements
only bitblt and rectfill operations, both of
which have mature, well-tested implementations.

• The simplification of the event handling logic.

• The elimination of authentication and network
communication responsibilities from the server.

• Our abandonment of the X11 communication
model in favor of accountable, confined informa-
tion transfer.

We suspect, but have not endeavoured to prove, that the
covert channel bandwidth available through EWS is less
than that of X11. There are clearly fewer points of im-
plicit rendezvous, and generally reduced variance across
EWS operations that might be exploited for timing mea-
surement. The absence of server-side queueing also helps.

While these changes clearly reduce the vulnerability of
the server, it is important to ask what new responsibilities
have been imposed on clients that might have security im-
plications. Clients now carry two blocks of content that
were not required in the X11 design:

• A code library implementing rendering, which may
be compromised.

• A font library, which is probably shared across mul-
tiple applications.

Our feeling is that the rendering library does not introduce
a substantial new threat. Applications already depend ex-
tensively on widget libraries; the introduction of the ren-
dering library into the build does not introduce any new
problems that were not already present.

The font library is a greater concern, though fonts were
not really protected under the X11 design either. We

do not know of any technique capable of preventing font
forgery by the font distributor. The EROS capability sys-
tem provides sufficient protections that fonts cannot prac-
tically be modified after installation, and there are no dis-
play operations that allow one client to modify the fonts
used by another.

The current EWS prototype is vulnerable to resource ex-
haustion. A hostile client could create enough windows
to exhaust the virtual memory of the display server. Our
plan for this is to restrict the total number of simultaneous
windows (say, to 65,536), and reserve a subset of this for
allocation by trusted applications. We can then construct
a trusted usage reporting agent that would alert the user
to this abuse and allow the user to destroy the offending
application.

9 Usability

While a full usability test is beyond the scope of this pa-
per, we did perform a very informal usability test using
a paint program that we constructed as an early testing
tool. Wesley Vanderburgh, age 4, created the drawing in
Figure 5. The resulting figure was enhanced by his father
for publication. Wesley is in many respects representative
of potential end users for EWS. He is completely com-
fortable using the Microsoft system, largely impervious
to training, and eager to get on to useful work without in-
terruption or distraction – play time is valuable! While the
image did take a while for Wesley to generate, our unbi-
ased observer (his father) reported that this appears to be
due to the immaturity of the test subject’s fine motor func-
tions rather than any deficiency in the window system. We
note that this test is inconclusive, as four year olds exhibit
considerably greater adaptability and flexibility than ma-
ture computer users.

On a more serious note, the window system described
here has been used in presentations to DARPA without
difficulty or noticeable interactive performance deficien-
cies. Our limiting factor in testing is the immaturity of
the EROS runtime environment and the consequent diffi-
culty of bringing up commonly used applications. A port
of the Gtk graphics toolkit is currently in progress, which
we hope will resolve this.

10 Related Work

Considering the importance of window systems in modern
computing, there has been surprisingly little work on se-
curity in window systems. We have discussed throughout



Figure 5: Usability demonstration by young potential Pi-
casso.

this paper the impact of Trusted X [9, 8] and the Compart-
mented Mode Workstation [4, 20, 21, 33] efforts.

A key decision in the design of EWS was the adoption
of local shared memory to support our basic rendering
model. This was encouraged by our experiences as early
users of the Blit [22, 24] bitmapped terminal, and later
by the architectural success of the Gnot (the original dis-
play for Plan 9 [23]). The success of these two systems
convinced us that the argument for generic remoting ad-
vanced by Gettys and others is not compelling. Even
in the absence of a cooperative display update protocol,
bitmap propagation strategies such as those used by tools
like VNC [25] do an excellent job of providing efficient
display update while reducing the displays server’s trusted
computing base by an order of magnitude. The display
update protocol used in EWS is actively VNC-friendly.
For applications such as movie display or gaming where
low latency is required, remote connections are unsatis-
factory from a usability standpoint. In the movie case,
there is also a substantial bandwidth (and therefore power)
cost imposed by performing decompression before the
bits arrive at the destination display. In short, generic re-
moting appears to be viable only in the cases where inter-
active performance does not matter.

While many other well-known window systems exist,
most notably those of the Macintosh [2, 3], Microsoft
Windows, and the Alto [31], none have given particular
attention to the possibility of hostile applications.

An increasing number of applications today incorpo-
rate scripting languages or full programming languages.
Among many others, Tygar and Whitten have identified

several categories of vulnerabilities that can arise from
such mechanisms [32]. Effective use of the EWS mech-
anisms in concert with the capability underpinnings of
EROS eliminate many of these vulnerabilities.

Ka Ping Yee has considered various concerns in secure
usability design [35]. Yee’s work in this area has been
strongly influenced by years of exposure to the EROS
community and the E capability-based scripting language
of Mark Miller. The reverse is also true; EWS contains
elements that are included specifically to support some of
the idioms proposed by Yee.

The PERSEUS project is attempting to provide security
guarantees in the context of mobile devices that are com-
parable to those of the EROS project. Their architectural
overview paper [19] provides an overview of both the de-
sign issues and some of the possible techniques that might
serve as solutions. A challenge facing the PERSEUS
project today is that they have implemented their proto-
type on top of the FIASCO kernel [13], which is an im-
plementation of the experimental L4x2 architecture [16].
While acceptable for research purposes, this decision was
problematic in a system that was created with the goal
of ultimate commercial deployment: the L4 architecture
did not (and does not) provide sufficient security at the
microkernel level to be adequate for use in a secure sys-
tem. This critique was raised by one of the authors at the
time the PERSEUS project was first proposed, and has
yet to be addressed. Recently, collaboration has started
between the L4 community and the EROS community to
identify and specify a next-generation secure L4 architec-
ture. Among other systems, the PERSEUS project will
clearly benefit from these revisions.

Following up on the web spoofing work by Felten et al.
[11], Ye and Smith have examined the problem of trusted
paths in browsers [34]. They examine various methods
for displaying trusted path information to the user, and ex-
plore the pitfalls of each. This is an area that needs further
exploration in EWS. Our work on EWS to date is largely
complementary with the work of Ye and Smith. Where
Ye and Smith focus on issues of presentation, we have fo-
cused on issues of separation. Our goal is to ensure that
ordinary applications lack the necessary authority to dis-
rupt the trusted path successfully, and to ensure that any
hostility encountered in an application remains confined
to that application.

10.1 DoPE

DoPE [12] is a window system created by the L4 team at
T.U. Dresden for use in real-time systems. The real-time



design environment presents many of the same constraints
that arise in trusted window systems. While motivated by
real-time predictability rather than security, the DoPE sys-
tem must minimize variance, and in doing so, must apply
resource minimization techniques that are comparable to
those described here. Discussions between the two project
teams revealed that the two systems are comparable in
size and complexity when DoPE’s rendering operations
and higher-level widgets are excluded from the compari-
son (Table 1).

Feature EWS DoPE
Core function, drivers 4,500 7,000
Higher Widgets N/A 3,000

Table 1: Comparative sizes of EWS and DoPE, in lines of
code.

The total lines of code attributable to drivers are approx-
imately equal in the two systems. EWS provides two
hardware-dependent display drivers (VMWare and Rage-
128). DoPE implements only one display driver (VESA),
but the driver exports a richer set of rendering operations
than the EWS drivers. Given this, we believe that the
2,500 line gap in the respective core functionality is pri-
marily due to the inclusion of lower-level widgets in the
DoPE display server design.

As originally conceived, EWS incorporated a similar wid-
get system, but we are aware of no motivation from ei-
ther a security or a performance perspective that requires
this functionality to be implemented by the trusted com-
puting base (TCB). In consequence, TCB minimization
requirements therefore mandated moving this function to
the client, and we never attempted a server-side widget
implementation. If the above breakdown of function and
complexity is correct, the security argument for remov-
ing widgets was clearly compelling: the complexity of the
DoPE widget set (including lower and higher widgets) is
approximately equal to the complexity of the entire EWS
trusted computing base.

Both DoPE and EWS plan to incorporate support for 3D
acceleration in future work. Hardware interactions of this
kind are necessarily trusted, but from a security perspec-
tive, defensive engineering practice suggests that such
function should be implemented by a separate protection
domain. Software rendering routines intended to replace
missing hardware functions should be implemented by the
client rendering library, which is entirely outside of the
trusted computing base; there is no reason to incorporate
such function into the display server.

11 Acknowledgements

While it has diverged in recent years, the original EROS
architecture was closely derived from that of KeyKOS.
No work derived from KeyKOS could be complete with-
out acknowledging the principal architects and implemen-
tors of that system: Norman Hardy, Charlie Landau, and
William Frantz. Each of these individuals has participated
in and encouraged work on the EROS system.

While this paper does not present X11 as a positive ex-
ample for purposes of security, it is a system that contains
many brilliant ideas that have had a strong influence on
the work of the authors for many years. In large measure,
X11 and its predecessors are responsible for the accep-
tance of bitmapped computer graphics today. Many years
ago, Phil Karlton spent a fair bit of time explaining the
design of X11 to Jonathan S. Shapiro while we worked
on the Silicon Graphics ProDev tool set. More recently,
Jim Gettys offered some of his rationale for the desirabil-
ity of remote display access. Ultimately, though it was not
his intention, he reaffirmed our view that remoting didn’t
belong in the window system.

Jeremy Epstein was gracious enough to review a draft of
this paper, and offered a number of helpful comments.

We are extremely greatful to Norman Feske and Hermann
Härtig of the Dresden L4 group for their time and courtesy
in explaining the implementation and design concept of
DoPE.

Wesley Vanderburgh graciously permitted us to reproduce
Figure 5. Framed and signed lithographs may be obtained
by request from the artist, who is struggling to pay for his
first grade home-schooled education and would appreciate
your support. Twenty years from now, they will surely be
very rare and possibly more valuable than SCO stock.

12 Conclusion

We have presented the design of the EROS Trusted Win-
dow System, which provides robust traceability of user
volition and is capable (with extension) of enforcing
mandatory access controls. The EWS implementation, in-
cluding the two current display drivers, is less than 4,500
lines, which is a factor of ten smaller than previous trusted
window systems such as Trusted X, and well within the
range of what can easily be evaluated for high assurance.

Based on our experience with both the implementation
and the result, the EROS Window System is practical,



usable and assurable. As is so often the case in asking
how to secure subsystems, the key lay in deciding what
to remove. What is staggering in this instance is that the
trusted component of EWS is between 2% and 5% of the
lines of code of X11 with no user-apparent reduction in
functionality or utility. It can readily be extended to new
input devices, and extension of this form would not entail
a complex re-evaluation effort because input drivers are
strongly isolated. Most of the work would lie in the as-
sociated device helper, which is isolated from the display
server by a protection boundary.

While we have not attempted to tune the EWS implemen-
tation for performance, the evidence of the widely-used
Apple Quartz 2D implementation suggests that final per-
formance should be acceptable.

The small size of EWS provides a partial validation of
the EROS design. A key idea in EROS is that breaking
applications into small, protected components yields more
secure applications and often allows smaller programs to
perform very powerful functions by leveraging existing
components.

Both EROS and the EROS window system implementa-
tion will be accessable via the EROS web site at the time
of publication.

References

[1] M. D. Abrams. Renewed understanding of access control
policies. In Proc. 16th National Computer Security Con-
ference, pages 87–96, Oct. 1993.

[2] Apple Computer. Inside Macintosh. Reading, Mas-
sachusetts, 1985.

[3] Apple Computer. Quartz 2D Reference. Apple Computer,
Inc., 2003.

[4] J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T.
Cummings. Compartmented mode workstation: Prototype
highlights. IEEE Transactions on Software Engineering,
16(6):608–618, June 1990.

[5] B. Bershad, T. Anderson, E. Lazowska, and H. Levy.
Lightweight remote procedure call. In Proc. 12th Sym-
posium on Operating Systems Principles, pages 102–113,
Dec. 1989.

[6] R. Cox, E. Grosse, R. Pike, D. Presotto, and S. Quinlan.
Security in plan 9. In Proceedings of the 11th USENIX
Security Symposium, pages 3–16, San Francisco, 2002.

[7] U.S. Department of Defense Trusted Computer System
Evaluation Criteria, 1985.

[8] J. Epstein, J. McHugh, H. Orman, R. Pascale, A. Marmor-
Squires, B. Dancer, C. R. Martin, M. Branstad, G. Benson,
and D. Rothnie. A high-assurance window system proto-
type. Journal of Computer Security, 2(2):159–190, 1993.

[9] J. Epstein and J. Picciotto. Trusting X: Issues in building
Trusted X window systems -or- what’s not trusted about
X? In Proceedings of the 14th Annual National Computer
Security Conference, Washington, DC, USA, Oct. 1991.
A survey of the issues involved in building trusted X sys-
tems, especially of the multi-level secure variety.

[10] J. Epstein, et. al. A prototype B3 Trusted X Window Sys-
tem. In Proceedings of the Seventh Annual Computer Se-
curity Applications Conference, San Antonio, TX, USA,
Dec. 1991. The architecture for TRW’s high assurance
multi-level secure X prototype.

[11] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach.
Web spoofing: An internet con game. In 20th National In-
formation Systems Security Conference, Baltimore, Mary-
land, Oct. 1997.

[12] N. Feske and H. Haertig. DOpE – a window server for
real-time and embedded systems. In Proc. 24th IEEE In-
ternational Real-Time Systems Symposium, Cancun, Mex-
ico, Dec. 2003.

[13] M. Hohmuth and H. Härtig. Pragmatic nonblocking syn-
chronization for real-time systems. In Proc. 2001 USENIX
Annual Technical Conference, pages 217–230, Boston,
MA., 2001.

[14] Common Criteria for Information Technology Security.
International Standards Organization, 1998. International
Standard ISO/IS 15408, Final Committee Draft, version
2.0.

[15] M. J. Kilgard, D. Blythe, and D. Hohn. System sup-
port for openGL direct rendering. In W. A. Davis and
P. Prusinkiewicz, editors, Graphics Interface ’95, pages
116–127. Canadian Human-Computer Communications
Society, 1995.

[16] L4 eXperimental reference manual, version X.2. Techni-
cal report, L4KA Team, University of Karlsruhe, 2001.

[17] B. W. Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613–615, 1973.

[18] C. W. Mercer, S. Savage, and H. Tokuda. Processor ca-
pacity reserves: Operating system support for multimedia
applications. In Proc. IEEE International Conference on
Multimedia Computing and Systems, May 1994.

[19] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and
A. Weber. The PERSEUS system architecture. In
D. Fox, M. Köhntopp, and A. Pfitzmann, editors, VIS
2001, Sicherheight in komplexen IT-Infrastrukturen, DuD
Fachbeitrge, pages 1–18. Vieweg Verlag, 2001. Also avail-
able as IBM Research Report RZ 3335 (#93381).

[20] J. Picciotto. Towards trusted cut and paste in the X Win-
dow System. In Proceedings of the Seventh Annual Com-
puter Security Applications Conference, San Antonio, TX,
USA, Dec. 1991. A discussion of the security problems as-
sociated with cut and paste in multi-level secure versions
of X.

[21] J. Picciotto and J. Epstein. A comparison of Trusted X se-
curity policies, architectures, and interoperability. In Pro-
ceedings of the Eighth Annual Computer Security Appli-
cations Conference, San Antonio, TX, USA, Dec. 1992.
A survey of interoperability issues among CMWs and the
TRW prototype.

[22] R. Pike. The blit: A multiplexed graphics terminal. Bell
Labs Tech. J., 63(8, part 2):1607–1631, Oct. 1984.



[23] R. Pike. 8 1

2
, the plan 9 window system. In Proceedings

of the Summer 1991 USENIX Conference, pages 257–265,
Nashville, 1991.

[24] R. Pike, B. Locanthi, and J. Reiser. Hardware/software
tradeoffs for bitmap graphics on the blit. Software - Prac-
tice and Experience, Jan. 1985.

[25] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual network computing. IEEE Internet
Computing, 2(1):33–38, 1998.

[26] D. Rosenthal. Inter-client Communications Conventions
Manual, version 2.0. X Consortium and Sun Microsys-
tems, 1994.

[27] R. W. Scheiffler and J. Gettys. X Window System. Digital
Press, 3rd edition, 1992.

[28] M. Segal and K. Akeley. The OpenGL Graphics System:
A Specification, version 1.0. Silicon Graphics, Inc., 1993.

[29] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A
fast capability system. In Proc. 17th ACM Symposium on
Operating Systems Principles, pages 170–185, Kiawah Is-
land Resort, near Charleston, SC, USA, Dec. 1999. ACM.

[30] J. S. Shapiro and S. Weber. Verifying the EROS confine-
ment mechanism. In Proc. 2000 IEEE Symposium on Se-
curity and Privacy, pages 166–176, Oakland, CA, USA,
2000.

[31] C. Thacker, E. M. McCreight, B. W. Lampson, R. F.
Sproull, and D. Boggs. Alto: A personal computer. ACM
Transactions on Computer Systems, 2(1), Feb. 1984.

[32] J. Tygar and A. Whitten. WWW electronic commerce
and Java Trojan horses. In Proc. 2nd USENIX Workshop
on Electronic Commerce, pages 243–250, Oakland, CA,
1996.

[33] J. P. L. Woodward. Security requirements for system high
and compartmented mode workstations. Technical Report
MTR 9992, Revision 1 (also published by the Defense In-
telligence Agency as document DDS-2600-5502-87), The
MITRE Corporation, Bedford, MA, USA, Nov. 1987. The
original requirements for the CMW, including a descrip-
tion of what they expect for Trusted X.

[34] Z. E. Ye and S. Smith. Trusted paths for browsers. In Proc.
11th USENIX Security Symposium, pages 263–279, 2002.

[35] K.-P. Yee. User interaction design for secure systems.
In Proc. 4th International Conference on Information and
Communications Security, pages 278–290, Dec. 2002.


