Secure Applications Need Flexible Operating Systems

David Mazieres and M. Frans Kaashoek
MIT Laboratory for Computer Science
545 Technology Square, Cambridge MA 02139

E-mail: dm@ cs. m t . edu,

Abstract

As information exchange over wide area networks be-
comes an increasingly essential component of new ap-
plications, firewalls will no longer provide an adequate
defense against malicious attackers. Individual work-
stations will need to provide strong enough security to
contain malicious processes and prevent the domino ef-
fect of a pierced firewall. Some of the most commonly
found security holes today result from the fact that sim-
ple operations can be surprisingly difficult to implement
correctly on top of a traditional POSIX-like interface.
We claim that by combining hierarchically-named ca-
pabilities, a novel generalization of the Unix user and
group ID concept, with the low-level system calls of an
exokernel operating system, we can achieve a system
call interface flexible enough to avoid much of the com-
plexity that often leads to security holes in discretionary
access control operating systems like Unix.

1 Introduction

The lack of flexibility in today’s multi-user operating
systems seriously hurts system security. In particular,
inadequate system call interfaces force programs to run
with more privilege than they should need. Moreover,
coarse-grained kernel access control mechanisms fail to
meet the protection needs of applications. This pushes
many access control and validity decisions into over-
privileged user-level software, where a cumbersome sys-
tem call interface can vastly complicate correct imple-
mentation. A large class of security holes has con-
sequently resulted from bugs in code to perform such
seemingly simple tasks as opening a file only if it be-
longs to a particular user. In this position paper, we

This research was supported in part by the Advanced Research
Projects Agency under contracts N00014-94-1-0985 and N66001-96-
C-8522, and by an NSF National Young Investigator Award.

kaashoek@cs. mt. edu

therefore argue that flexible operating systems can sim-
plify the construction of secure applications, thereby de-
creasing the likelihood of implementation mistakes.

As the Internet continues to grow, information ex-
change over wide-area networks will become an increas-
ingly essential component of new applications. Already,
many applications fetch their help files and other data
over the world wide web. The Quicken personal fi-
nance program, for instance, transparently downloads
stock quotes over the network to update portfolios. The
FreeBSD Unix operating system even installs and up-
grades itself over the network.

Unfortunately, this need for seamless network con-
nectivity directly conflicts with present-day network se-
curity policies. Such policies necessarily assume that a
determined cracker can break normally configured sys-
tems attached to the Internet. Consequently, security-
conscious sites must get their machines away from the
wide area network. This approach typically means in-
stalling firewalls to keep outside attackers from exploit-
ing the known deficiencies of internal networks. In the
short term, these firewalls may hinder the deployment
of distributed applications near sensitive data. Eventu-
ally, however, user demands will force sites to change
policies, adopt more complex proxy servers, and per-
haps even relax packet filtering. Such changes will ren-
der internal machines increasingly vulnerable to outside
attack. Since the security of all machines behind a fire-
wall depends on the security of the weakest machine,
the appeal of wide-area applications will require better
security for all machines.

We propose improving security by increasing the
flexibility of operating systems, which we argue will
both decrease the level of privilege needed to accom-
plish many tasks and simplify the code required to make
access control decisions in trusted software. Our ap-
proach combines hierarchically-named capabilities, a
novel generalization of the Unix user and group ID con-
cept, with the low-level interfaces of the exokernel[3],
an operating system that attempts to provide as few



abstractions as possible in privileged software. Our
scheme provides a single kernel access control mech-
anism for all resources, designed to be used directly
by applications. This organization should make secure
applications much easier to write by freeing applica-
tions from the need to precede system calls with access
checks—a practice which often causes race-conditions
in Unix and prevents trusted applications from safely
reusing code developed for untrusted programs.

2 Why arethere so many security holes?

Why are there so many vulnerabilities in today’s dis-
cretionary access control systems? Before delving into
the details of our own proposal, it makes sense to discuss
some of the major sources of security holes in today’s
operating systems. We therefore identify six aspects of
Unix systems that have made them particularly prone to
security holes':

1. Insecure network protocols

Most of the network protocols in use today trans-
mit secret passwords or filehandles in cleartext over
the network, or rely on the source address of pack-
ets for authentication. Even one-time password
systems such as s/key[4] allow an active attacker
to hijack an authenticated TCP stream. Inexperi-
enced attackers can easily obtain software packages
for exploiting various insecure but widely-used net-
work protocols.

2. The use of C and libc

Many security problems stem from the use of C
functions such as gets() and sprintf() that
do not check the size of the output buffer and conse-
quently allow malformed input to corrupt memory
arbitrarily. Such problems surface with alarming
frequency in places where they can be remotely ex-
ploited, for instance mail transport agents and web
servers. Worse yet, however, people seem resigned
to accept these problems in ordinary untrusted util-
ities. As an extreme example, acommentin zlib—a
compression library used by the popular gzip com-
pression tool (as well as in some kernel-level im-
plementations of PPP!), recommends that appli-
cations catch segmentation fault signals because
some forms of corrupt input cause the library to “go
nuts.” Though gzip cannot be invoked directly by a

1We have chosen to focus on Unix rather than Windows NT, though
both systems are popular in networked environments. We believe that
many aspects of this analysis apply equally to NT, but the widespread
availability of source code for Unix utilities and operating systems has
allowed much better analysis of Unix’s vulnerabilities than NT’s.

remote attacker, people commonly uncompress for-
eign files from unknown sources, making this a po-
tentially serious vulnerability.

3. Violation of the principle of least privilege

The principle of least privilege states that a pro-
cess should have access to the smallest number
of objects necessary to accomplish a given task.
Unix basically only provides two privilege levels:
“root” and “some user.” Much of the system soft-
ware must consequently execute as root, providing
a large selection of complex daemons in which an
attacker can search for flaws. While people have
long complained about the need to run a great deal
of software as root, equally problematic is the re-
quirement that a user give every program he runs
access to all of his files. In the previous example,
for instance, the least privilege gzip needs is read
access to the input file and write access to the out-
put file, but Unix provides no way to restrict access
in this way. Thus a subverted gzip has the potential
to cause great damage.

4. A namespace decoupled from underlying files

The decoupling of file names from actual files in
Unix has lead to numerous race conditions, called
Time of Check to Time of Use or TOCTTOU
bugs[1]. Consider an extremely common exam-
ple: Many sites periodically delete old files in the
scratch directory /tmp. The command used to do
this usually resembles this:

find /tmp -atime +3 -exec
rm -F — {} \;
As shown in Figure 1, however, an attacker can
trick this command into deleting the system pass-
word file by creating and moving a file called
/tmp/etc/passwd. The find program uses
Istat() to check that /tmp/etc is not a sym-
bolic link, but by the time it runs rm to delete
/tmp/etc/passwd, the attacker has had time to
create a symbolic link in the place of /tmp/etc?.

5. System calls that use all available privilege

The Unix kernel bases access control decisions on
all privileges available to a process. If a privileged
program wishes to perform an operation only if a
particular user or group can do so, it must sepa-
rately check permissions beforehand, a potentially
tricky task given the risk of TOCTTOU problems
as described in the previous section. Such checks

2Note that in practice, this race is much easier to win than it might
appear. By creating a large number of files in/ t np/ et c, the attacker
can make the r eaddi r () call take a long time.



Root:

Attacker:

readdir (“/tmp™)
Istat (“/tmp/etc”)
readdir (“/tmp/etc”)

unlink (“/tmp/etc/passwd”)

mkdir (“/tmp/etc”)
creat (“/tmp/etc/passwd”)

rename (“/tmp/etc”, “/tmp/x’")
symlink (“/etc”, “/tmp/etc”)

Figure 1. Exploiting a typical garbage collector of temporary files.

are also cumbersome to perform in conjunction
with the C standard 1/O library, so that program-
mers sometimes neglect them. As an example, the
NetBSD Unix at command runs as root to queue
jobs in a protected spool directory, but can also take
its input from a user-specified file. Until recently,
it was possible to read any file on the system by
specifying it as an argument to at -f.

6. No process to process authentication

In order for users to perform privileged actions in
a controlled way (for instance editing the password
file to change their own passwords), Unix allows
“setuid” programs that take on the privilege of a
user other than the one invoking the program. In
practice, setuid programs have caused considerable
security problems because of the large amount of
untrusted state they inherit from the invoking user.
Until recently, for example, any user could trash
the sendmail alias database by setting his maximum
file size to 0 and running sendmail -bi. This com-
mand causes sendmail to rebuild the alias database.
However, sendmail did not originally anticipate in-
heriting a small file size limit, so hitting this limit
caused it to die and leave a truncated database.

As an alternative to setuid (and a useful mech-
anism for other purposes), users might change
their passwords through client-server interaction.
Servers don’t inherit any state from their clients,
which makes them quite a bit safer than setuid pro-
grams. Unfortunately, however, sockets—the usual
Interprocess Communication (IPC) mechanism in
Unix—neither provide a server with any assurance
of the caller’s identity nor allow the server to take
on the caller’s identity. Setuid programs often need
the identity of the invoking user to perform access
checks and logging, and they sometimes even need
to revert to the the invoking user’s identity.

Of the categories above, only network protocols are
being widely addressed and seem likely to improve in

the near future. As for C and libc, there are plenty
of open research questions in programming languages
which we don’t intend to address here, except to the ex-
tent that the principle of least privilege can prevent sub-
verted programs from doing much damage. We do, how-
ever, plan to attack problems 3-6 directly. A great many
security holes can be attributed to these problems, yet
typically such vulnerabilities get addressed only through
specific patches on a case-by-case basis. Though one
can indeed work around specific problems this way, the
code required is generally quite tricky. For this reason,
patches have trouble keeping up with newly discovered
security holes. Our goal is therefore to make such vul-
nerabilities easy to avoid and the code for doing so sim-
ple and straightforward.

3 Security and Flexibility

With some common sense and a few ideas from pre-
vious systems, we can develop operating systems much
more conducive to security than any widely used op-
erating system today. We can’t make application pro-
grammers more careful about security, but we can build
operating systems that make it easy to avoid common
security holes. Under a better operating system, race-
free implementations of simple tasks would never re-
quire complex code; most bugs would not automatically
lead to a root shell; finally, a uniform kernel access con-
trol mechanism would be flexible enough to replace any
non-atomic application-level access control decisions.
We therefore propose developing a system call interface
based on the following realizations:

e The kernel should provide authenticated IPC, and
should allow credentials to be passed between pro-
cesses. Not only will this permit the elimination of
setuid programs, but, as we shall see below, pass-
ing credentials can dramatically reduce the level of
privilege needed by a number of login-like applica-
tions.



e Access control decisions and system calls should
operate in terms of low-level file objects rather than
mutable path names that can change and lead to
TOCTTOU bugs. Thus, name to file translations
should move to user-space to give programmers
control over all aspects of the process including
such details as whether symbolic links are followed
or filesystem boundaries crossed. The exokernel
operating system[3] already provides applications
with such control, and is consequently the platform
on which this work is based.

e Trusted applications should rely on the kernel to
make access control decisions. The kernel should
do so atomically with each system call, and should
base the decision on a universal access control
mechanism visible to and consistent across all ap-
plications. Again, this will help prevent TOCT-
TOU bugs. If the kernel provides access control
mechanisms flexible enough to capture an applica-
tion’s intent, the application will no longer need to
precede system calls with tricky, non-atomic sanity
checks.

e As a corollary to the previous point, applications
should explicitly specify the credentials with which
they intend to authenticate each system call. For
instance, it should be trivial for privileged soft-
ware to make system calls on behalf of unprivi-
leged users. The kernel should never assume de-
fault credentials, as this would prevent code that
uses implicit credentials from being reused in priv-
ileged applications. Though previous systems (for
instance Taos[7]) have used such explicit credential
arguments, POSIX has nothing like this and Win-
dows NT requires credentials to be assigned per
thread rather than for each system call.

o All applications, even unprivileged ones, should
rely on the kernel’s universal access control mech-
anism to achieve safe sharing of resources. If, how-
ever, one access control mechanism is to meet most
application needs, it must be flexible enough that it
allows applications to define their own notions of
identity. This means allowing on-the-fly creation
of new principals or credentials under which mu-
tually distrustful applications can safely and easily
share resources.

All but the last of these points should be relatively
straightforward. Allowing untrusted applications to cre-
ate new principals on-the-fly, on the other hand, could
seriously complicate the issues of accounting and con-
trolling buggy programs. For instance, a user should
clearly not have the ability to create a process he cannot

0 1 7
AC NAME

A

M/DPEEMW V|P LEN

Bits: 7 6 5 4 3 2 1 0

Bytes:

Figure 2. Structure of hierarchically-named capa-
bility

kill, otherwise debugging an application that takes on
newly-created credentials might require constant inter-
vention on the part of an administrator. Though one can
imagine several ways of avoiding unkillable processes
and unfreable resources, we propose hierarchically-
named capabilities, a novel protection scheme with
a simple and efficient implementation. Despite the
name, these capabilities more closely resemble a gen-
eralized form of Unix user and group ID than traditional
capabilities[2]. Our terminology and the hierarchical
naming we use come from the VVSTa[6] operating sys-
tem, though exokernel capabilities function differently
from VSTa ones.

Figure 2 shows the layout of a hierarchically-named
capability. A capability is 8 bytes long. The first byte
records the properties of a capability and the other 7
bytes its name. The properties in the first byte include
the length of the name (from 0 to 7 bytes), a valid bit,
a pointer bit (for extended ACLS), and three permis-
sions bits: modify ACL/duplicate capability, allocate re-
sources, and write. If one capability’s name is a prefix
of another’s, then the shorter capability dominates the
longer one, meaning that the shorter capability can au-
tomatically authorize any request the longer one can.

The kernel maintains a list of capabilities owned by
each process, and an access control list (ACL) of ca-
pabilities allowed access to each object in the system.
When a process requests access to a particular resource,
it must explicitly specify which of its capabilities it in-
tends to gain access with. The kernel then traverses the
resource’s ACL. If it finds an ACL entry that either
matches or is dominated by the designated capability,
and if the appropriate permission bits are set both in the
process’s capability and in the access control list entry,
then the request is granted. Otherwise, it is rejected.



(@)

csh
dm daw 1.115.0
users d-w 2.96.0
exopc d-w 2.127.0
other d-w 0.0.0.0.0.0.1
(© _
file

(b) _
Mobile Code
dm.x daw 1.115.0.5.0.0
ACL

~dm maw 1.115.0,
maw 1.115.0,

“dm/xFiles

Figure 3. Safe execution of untrusted, unverified mobile code. The letters d, m, &, and w, represent the corre-
sponding permissions bits in the hierarchically-named capabilities. (a) The list of capabilities granted upon login
to user dm in groups users and exopc. These correspond to 16-bit Unix uid 115 (tagged with the initial byte
1 to avoid conflicting with gids of the same number, and represented in little-endian format as 115 . 0), and gids
96 and 127 (tagged with the initial byte 2). (b) A restricted list of capabilities given to the untrusted code. (C)
Directory permissions which ensure that the mobile code can only read/write files in “dm/xFiles.

Applications can create or forge® new capabilities at
will, but a new capability must be dominated by an exist-
ing one. This allows mutually distrustful applications to
share resources under newly created capabilities. Using
the new capabilities, applications can manipulate shared
resources without fear of being tricked into manipulat-
ing more sensitive objects. Because originally issued ca-
pabilities are a prefix of all subsequently created capa-
bilities, this scheme also allows for full accountability of
all resource usage. A prefix of the capability that owns
any resource will show exactly who is responsible for
having allocated the resource, and that user will always
be allowed to reclaim the resource. Some examples will
illustrate the use of hierarchically-named capabilities.

Example: Mobile Code

There are two prevalent types of mobile code today:
Java applets and Active-X binaries. Java applets rely on
a type-safe language to prevent untrusted code from do-
ing any damage. Unfortunately, one has to trust a great
deal of software, from the byte-code verifier to class li-
braries, in order to execute untrusted Java code. Fur-
thermore, there are obvious performance and function-
ality penalties from forcing people to use an interpreted,
garbage-collected language. Active-X solves the perfor-
mance problems by shipping digitally signed raw x86 bi-

3The term forge, used here to be consistent with VVSTa, means
“form or bring into being.” It in no way implies any kind of coun-
terfeiting. The kernel maintains the list of capabilities owned by a pro-
cess in protected memory, so that applications have no way of faking
capabilities.

naries around as mobile code. However, one is required
to trust the author of an Active-X binary before running
it.

An exokernel with hierarchically-named capabilities,
however, would allow people to execute untrusted bi-
nary machine code without giving it access to most data
on the system. Figure 3 illustrates how such a system
might work. A user dm logs in and acquires capabil-
ities corresponding to his user and group IDs. Since
exokernel ACLs have no notion of world readable or
writable, he also acquires capability 0.0.0.0.0.0.1
that grants the equivalent of world permissions on Unix
files. After this user’s browser downloads untrusted mo-
bile code, it can use capability 1.115.0 to forge a new
capability, say 1.115.0.5.0.0, and create a process
for the mobile code which contains only that capabil-
ity. If permissions on files and directories are set up as
in Figure 3, the operating system will prevent the mo-
bile code from accessing any files on the system except
those in a special mobile code directory. Even world
readable files will be inaccessible to the mobile applica-
tion, as it would need capability 0.0.0.0.0.0.1 to
access those.

Example: Unprivileged Login

On a Unix system, any program that authenticates
and grants permissions to users must execute with all-
powerful root privileges. Examples of such programs
include login, su, ftpd, recexd, rshd, sshd, popd, cvs, and
more. A bug in any one of these programs would grant



user

password
login
daw 1.0.0.7.1.5
daw 1.115.0
user
' d-w 2.96.0
passwor d-w 2.127.0
d-w 0.0.0.0.0.0.1

daw .

Figure 4. An unprivileged login program acquiring
privileges through the authentication server.

immediate root privileges to an attacker. Given a mech-
anism for granting capabilities, however, a login process
no longer needs any special privileges beyond the ability
to read and write a terminal device or network connec-
tion. Instead of running as root, login can begin execu-
tion with a single, unique, and completely unprivileged
capability. As illustrated in Figure 4, once login has a
username and password, it can acquire appropriate priv-
ileges by contacting an authentication server. Thus, one
privileged authentication server can replace a large num-
ber of privileged programs. With this scheme, the dam-
age caused by a bug in login is limited to actions which
can be taken by its capabilities. Since login begins with
a unique capability, the worst an attacker can do is con-
sume memory and CPU time. No data on the system
could be disclosed or tampered with. Unprivileged lo-
gin programs are nothing new, particularly to distributed
systems such as Kerberos[5], but this simple authentica-
tion server could have saved a large number of security
holes in Unix.

Example: Using the Kernel for Access Control

The ssh[8] secure login program, a privileged setuid-
root application, needs to read a protected file as root.
Though the system must trust ssh to have root privileges,
ssh itself needs to create and write files in the home di-
rectory of the invoking user, and must ensure that it does
not accidentally overwrite some file not in fact accessi-
ble to that user. Between the race conditions caused by
writing the files as root and the risk of the debugger at-
taching to ssh if it drops privileges, the author found no
choice but to structure ssh as three processes communi-
cating over pipes. If system calls had allowed explicit
credentials, however, writing a file as an unprivileged
user would have been trivial.

4 Summary

There is nothing inherently difficult in many of the
tasks whose implementations cause security holes today.
Thus, jumping through hoops to create correct imple-
mentations on top of a Unix-like system-call interface
just doesn’t seem to be paying off. We need to design
operating systems that don’t make writing secure code
such a difficult task, and that contain the damage caused
by buggy applications. In this paper, we have argued
that hierarchically-named capabilities can combine with
a low-level exokernel interface to achieve precisely this
goal. Specifically, the resulting operating system can
minimize the amount of privileged code required on a
system, simplify the correct code for many operations,
and help privileged programs reuse ordinary code.

References

[1] M. Bishop and M. Dilger. Checking for race conditions in
file accesses. Computing Systems, 9(2):131-152, Spring
1996.

[2] J. B. Dennis and E. C. V. Horn. Programming semantics
for multiprogrammed computations. Communications of
the ACM, 9(3):143-155, March 1966.

[3] D.R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles, Cop-
per Mountain, CO, 1995. ACM.

[4] N. M. Haller. The S/KEY one-time password system. In
Proceedings of the ISOC Symposium on Network and Dis-
tributed System Security, February 1994,

[5] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos:
An authentication service for open network systems. In
Proceedings of the Winter 1988 USENIX. USENIX, 1988.

[6] A. Valencia. An overview of the VSTa micro-
kernel. from http://www.igcom.net/ jeske/
VSTa/vsta_intro.html.

[7] E. P. Wobber, M. Abadi, M. Burrows, and B. Lampson.
Authentication in the Taos operating system. ACM Trans-
actions on Computer Systems, 12(1):3-32, 1994.

[8] T.Ylonen. SSH — secure login connections over the Inter-
net. In Proceedings of the 6th USENIX Security Sympo-
sium, pages 37-42, July 1996.



