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Abstract

Dynamic code generation is the creation of executable code

at runtime. Such “on-the-fly” code generation is a powerful

technique, enabling applications to use rrmtime information to

improve performance by up to an order of magnitude [4, 8,20,
22, 23].

Unfortunately, previous general-purpose dynamic code gen-
eration systems have been either inefficient or non-portable.
We present VCODE, a retargetable, extensible, very fast dy-

namic code generation system. An important feature of VCODE
is that it generates machine code “in-place” without the use of
intermediate data structures. Eliminating the need to construct

and consume an intermediate representation at rrmtime makes
VCODE both efficient and extensible. VCODE dynamically gen-

erates code at an approximate cost of six to ten instructions per

generated instruction, making it over an order of magnitude

faster than the most efficient general-purpose code generation

system in the literature [10].
Dynamic code generation is relatively well known within

the compiler community. However, due in large part to the

lack of a publicly available dynamic code generation system, it
has remained a curiosity rather than a widely used technique.

A practical contribution of this work is the free, unrestricted

distribution of the VCODE system, which currently runs on the
MIPS, SPARC, and Alpha architectures.

1 Introduction

Dynamic code generation is the generation of machine code
at runtime. It is typically used to strip a layer of interpretation
by allowing compilation to occur at runtime. One of the most
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well-known applications of dynamic code generation is by in-

terpreters that compile frequently used code to machine code

and then execute it directly [2, 6, 8, 13]. Hardware simulators

and binary emulators can use the same techniques to dynami-

cally translate simulated instructions to the instructions of the

underlying machine [4, 22, 23]. Runtime partial evaluation
also uses dynamic code generation in order to propagate run-

time constants to feed optimization such as strength reduction,
dead-code elimination, and constant folding [7, 20].

Unfortunately, portability and functionality barriers limit

the use of dynamic code generation. Because binary instruc-
tions are generated, programs using dynamic code generation
must be retargeted for each machine. Generating binary in-
structions is non-portable, tedious, error-prone, and frequently

the source of latent bugs due to boundary conditions (e.g.,

constants that don’t fit in immediate fields) [21]. Many of the

amenities of symbolic assemblers are not present, such as de-

tection of scheduling hazards and linking of jumps to target ad-

dresses. Finally, dynamic code generation requires a working

knowledge of chip-specific operations that must be performed,

the most common being programmer maintenance of cache
coherence between instruction and data caches.

Once the goals of portability and usability have been sat-
isfied, the main focus of any dynamic code generation system

must be speed, both in terms of generating code (since code

generation occurs at runtime) and in terms of the generated

code.
This paper describes the VCODE dynamic code generation

system. The goal of VCODE is to provide a portable, widely
available, fast dynamic code generation system. This goal

forces two implementation decisions. First, to ensure wide
availability across different languages and dialects with modest
effort, VCODE cannot require modifications to existing compil-
ers (or require its own sophisticated compiler). Second, in order
to generate code efficiently VCODE must generate code in place,

I.e., VCODE must dynamically generate code without the luxury

(and expense) of representing code in data structures that are
built up and consumed at runtime, The main contribution of
VCODE is a methodology forpor-tably generating machine code
at speeds that formerly required sophisticated compiler support
or the use of hand-crafted, non-portable code generators.

The VCODE machine-independent interface is that of an ide-
alized load-store RISC architecture. This low-level interface
allows VCODE to generate machine code from client specifi-
cations at an approximate cost of six to ten instructions per

generated instruction. This overhead is roughly equivalent to
that of a highly tuned, non-portable dynamic code generator
(or faste~ compare [21]). Furthermore, the low-level instruc-
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tion set can be used by clients to write portable VCODE that

translates to high-quality code. VCODE is extensible, allowing

clients to dynamically modify calling conventions and register
classifications on a per-generated-function basis; it also pro-
vides a simple modular mechanism for clients to augment the
VCODE instruction set. Finally, the VCODE system is simple
to retarget, typically requiring one to four days to port to a

RISC architecture. VCODE currently runs on MIPS, SPARC,
and Alpha processors.

As discussed above, VCODE generates code in place. Elim-
inating the need to build and then consume an intermediate

representation at mntime has powerful effects. Code genera-

tion is more efficient, since intermediate data structures are not

constmcted and consumed. Elimination of intermediate struc-

tures also removes the need for VCODE to understand instmction

semantics. As a result, extending the VCODE instruction set is
simple, usually requiring the addition of a single line to the
VCODE machine specification.

VCODE is a general-purpose dynamic code generation sys-

tem in that it allows clients to portably and directly construct
arbitrary code at runtime. It is the fastest such system in the lit-

erature (by more than an order of magnitude). It is also the first

general-purpose system to generate code without the use of an
intermediate representation, the first to support extensibility;

and the first to be made publicly available,

This paper is structured as follows: we discuss related work
in Section 2. We provide an overview of the system, retargeting,

and some details of the client/vCODE interface in Section 3,
We measure the performance of three experimental clients in

Section 4. Section 5 presents some key implementation details
and Section 6 reports on our experiences using VCODE. Finally,
we conclude in Section 7.

2 Related Work

Dynamic code generation has along history. It has been used to

increase the performance of operating systems [20], window-
ing operations [18], dynamically typed languages [2, 13, 6],

simulators [23] and matrix manipulations [10]. In [14], Kep-

pel, Eggers and Henry survey many advantageous uses for
dynamic code generation,

ParcPlace sells an implementation of Smalltalk-80 that uses

a dynamic code generator for SPARC, Motorola 68k, PowerPC,
Intel x86, and other architectures. Unlike VCODE, their system
is designed specifically for the compilation of Smalltalk-80,

and not as a stand-alone system for dynamic code generation.

Engler and Proebsting [10] describe DCG, ageneral-purpose
dynamic code generation system. VCODE grew out of my expe-

riences building DCG and the subsequent use of DCG in building

a compiler for the ‘C kmguage [7]. Compared to DCG, VCODE is

both substantially simpler and approximately 35 times faster.
Both of these benefits come from eschewing m intermediate
representation during code generatio~ in contrast, DCG builds
and consumes IR-trees at mntime. VCODE also provides an
extensible framework and generates more efficient code than

DCG.
Engler, Hsieh, and Kaashoek [7] describe the language ‘C

(tick C), a superset of ANSI C that is designed for the high-

level, efficient, and machine-independent specification of dy-

namically generated code. Their implementation uses the DCG

dynamic code generation system that, as we described above, is
both substantially less efficient and more complex than VCODE.
Poletto, Engler, and Kaashoek [19] describe a reimplementa-
tion of ‘C that uses VCODE as its target machine. As a result,

‘C can automatically generate code for any architecture VCODE

has been ported to, and gains the advantages of VCODE: fast

code generation and efficient generated code. ‘C and VCODE

are complemental. The primary advantage of VCODE over ‘C
is that VCODE is, in principle, language independent; in con-
trast, since it is a language, ‘C requires relatively sophisticated
modifications to existing compilers. Also, VCODE’S low-level
nature allows greater control over low-level details (calling

conventions, register names, etc.).
VCODE is a manual code generation system. An alter-

native approach is to dynamically generate code automati-

cally [5, 15, 16]. While an automatic system can be easier

to use, it does require complex compiler support and can be
less applicable than a manual system. The reason for reduced

applicability is that automatic systems are primarily users of
dynamic code generation rather than providers of it. In con-
trast, VCODE clients control code generation and can create ar-
bitrary code at mntime. For instance, clients can use VCODE to
dynamically generate functions (and function calls) that take

an arbitrary number and type of arguments, allowing them
to construct efficient argument marshaling and unmarshaling

code [7]. It does not seem possible to efficiently perform such

operations with current automatic systems [5, 15, 16].

Leone and Lee [15] describe an interesting automatic dy-
namic code generation system that performs compile-time spe-

cialization of a primitive functional language. Recently, they
have extended their compiler, FABIUS, to accept a functional

subset of ML [16]. FABIUS generates code quickly by using
techniques developed by programmers to dynamically generate

code “by hand”: dynamic code is emitted by inline expanded
macros that create instructions whose operand register names
are determined at static compile time. In contrast, VCODE pro-

vides a new technique for portably generating code at equiv-

alent speeds without the support of a sophisticated compiler.
As a result, VCODE can be used, practically speaking, in more

arenas than FABIUS (e.g., in the context of a pointer and side-

effect rich language such as C).

Another interesting automatic code generation system is
Tempo [5], ageneral-purpose dynamic speciaIizerfor C. Tempo

can be easier to use than VCODE, but like other automatic sys-

tems, it requires complex compiler support and can be less
applicable. For example, the scope of Tempo’s optirnizations

is limited by the usual challenges C presents to optimizing
compilers (e.g., unrestricted aliasing).

Ramsey and Femandez have developed a tool kit for the

concise specification of functions to emit and disassemble ma-
chine code [21 ]. Like VCODE, their system can be used to

dynamically generate code quickly, is extensible, and is freely

distributed. Unlike VCODE, their system’s client interface is not

portable and, therefore, requires clients be rewritten for each

new architecture.

3 System Overview

The VCODE system is a set of C macros and support functions
that allow programmers to portably and efficiently generate

code at runtime. The VCODE interface is that of an idealized
load-store RISC architecture, VCODE instructions are simple

primitives (e.g., add, sub, load) that map readily to modem

architectures. This mapping is direct enough that most VCODE
instructions are translated to their machine code equivalents
“in-place” in client code.

An important benefit of VCODE’S in-place code generation
is that it consumes little space. Other than the memory needed
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to store emitted instructions, VCODE need only store pointers to

labels and unresolved jumps. At a cost of a few words per label,
this is a relatively insignificant amount of memory. In contrast,
a system that uses intermediate data structures requires space

proportional to the number of instructions.
VCODE has been designed with the main aim of reconcil-

ing the conflicting goals of fast code generation and efficient

generated code. VCODE achieves these goals via a low-level
interface (i.e., the assembly language of an idealized RISC ar-

chitecture). This interface has three main benefits. The first is
that it allows clients to perform many of the expensive code

generation operations (notably, virtual register allocation) at
static compile time, leaving VCODE to concentrate on the sim-
ple job of translating its instruction set into machine code, a

process that is neither difficult nor expensive.
The second benefit is that it allows code to be generated

quickly without the need for compiler support. This charac-

teristic has three desirable features. First, it makes the VCODE

system simple to implement, which has obvious pragmatic re-
sults. Second, and more subtly, the close match between VCODE
instructions and modern architectures allows VCODE to gener-
ate code in “zero passes”: VCODE instructions are translated

directly to the machine instructions that they correspond to. In
some sense, code generation has been replaced with transliter-
ation. Finally, since VCODE does not need compiler support, it
is (in principle) language independent.

The final benefit is that VCODE’S low-level interface allows

code to be written that is not possible from within a higher-level
language such as C. For example, VCODE clients can portably

generate function calls “on-the-fly” and access instructions that

have no natural higher-level idioms such as prefetching, branch

prediction, and byte swapping.

3.1 Instruction set architecture

The VCODE instruction set was designed by choosing and de-
riving instructions that closely match those of most existing

RISC architectures. This process has also been influenced by a
number of compiler intermediate representations, the strongest
influence being the intermediate representation language of the
kc compiler [12].

The instruction set is built from a set of base operations

(e.g., sub, mul) that are composed with a set of types (e.g.,
integer, unsigned). Each instruction takes register or immediate

operands and, usually, performs a simple operation on them.
VCODE supports a full range of types: signed and unsigned

bytes, halfwords, words and long words and single and double
precision floating-point. The base VCODE types, named for their
mappings to ANSI C types, are listed in Table 1. Some of these

types may not be distinct (e.g., I is equivalent to i on 32-bit
machines). Each VCODE instruction operates on some number

of typed operands. To reduce the instruction set, and because
most architectures only provide word and long word operations

on registers, most non-memory VCODE operations do not take
the smaller data types (i.e., c, UC,s, and us) as operands.

The VCODE htStIUCtiOn Set COnSiStSOf a Single core layer

that must be retargeted for each new machine and multiple
extension layers that are built on top of this core.

The core layer consists of instructions not readily synthe-
sized from other instructions, such as add. Table 2 lists the
VCODE core. Extension layers provide additional functional-
ity less general than that of the core (e.g., conditional move,
floating-point square root). For porting convenience, most of

these extensions are expressed in terms of the core itself. There-

fore, once the core has been retargeted, extensions will work
on the new machine as well. However, for efficiency, these

default definitions can be overridden and implemented instead
in terms of the resources provided by the actual hardware.

This duality of implementation allows site-specific extensions

and common idioms to be implemented in a portable manner

without affecting ease of retargeting.

3.2 Client/VCODE interface

Client programs specify code using VCODE’S machine-
independent instruction set. This instruction set is simple and

regular. These properties are important because the instructions

must be easily generated by client programs. In essence, every
client program is a small compiler front-end.

VCODE transliterates the instructions selected by clients to

machine code immediately, without the code generation passes

typical of other code generators. VCODE omits any significant
global optimizations and pipeline scheduling, which would

require at least a single pass over some intermediate represen-
tation, slowing VCODE by an order of magnitude. (Clients that
desire such optimization can layer them on top of the generic

VCODE system.) Global optimizations are the responsibility of

the client, which has access to the low-level VCODE instruc-
tion set. VCODE is only responsible for emitting efficient code
locally.

VCODE includes a mechanism to allow clients to perform
register allocation in a machine-independent way. The client

declares an allocation priority ordering for all register candi-

dates along with a class (the two classes are “temporary” and

“persistent across procedure calls”). VCODE allocates registers

according to that ordering. Once the machine’s registers are

exhaust&1, the register allocator returns an error code. Clients

are then responsible for keeping variables on the stack. In

practice, modem RISC architectures provide enough registers
that this arrangement is satisfactory. (This scheme works on

CISC machines as well, since they typically allow operations
to work on both registers and memory locations.) Although the
VCODE register allocator has limited scope, it does its job well;

it makes unused argument registers available for allocation, is
intelligent about leaf procedures, and generates code to allow

caller-saved registers to stand in for callee-saved registers and

vice-versa.

Complete code generation includes instruction selection,

binary code emission, and jump resolution. For most instruc-

tions, the first and second steps occur at the specification site
of the VCODE instruction. The only complications are jump in-
structions and branches: VCODE marks where these instructions

occur in the instruction stream and, when the client indicates
that code generation is finished, backpatches unresolved jumps.

Currently VCODE creates code one function at a time.1 A

sample VCODE specification to dynamically create a function
that takes a single integer argument and returns its argument

plus one is given in Figure 1.
This example illustrates a number of boilerplate issues:

VCODE macro names are formed by prepending a v- prefix to the

base instruction and appending the type letter. If the instruction
takes an immediate operand, the letter i is appended to the end
result. For example, the VCODE instruction specifying “add
integer immediate” is named v.addii (ADD Integer Immediate).

The following actions occur during dynamic code genera-
tion

‘In the future, this interface will be extended so that ctients can create several
functions simultaneously,
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~ I C equivalent
v void
c signed char
Uc unsigned char
s signed short
us unsigned short
i int
u unsigned

~ void ●

long
Ill unsigned long
f float
d double

Table 1: VCODE types

Standard b-operations (rd, rsf, rs2t)
add iululpfd addition
sub iululpfd subtraction
mul iululpfd mukipfication
div iululpfd division
mod iululp moduhrs
and Iulul logical and
or iulul logical or
xor iulul Iogicaf xor
ish iulul left shift
rsh iulul right sbiti, the sign blt is propagated for signed types

Standard wary operations (rd, rs)
com iulld bit complement
not iulul logical not
mov iululpfd copy rs to rd
neg iUIUl fd negation
set iululpfd load constant into r~ rsmust be an immediate
cvi2 u UI 1 convefi integer to type
CVU2 i d 1 convert unsigned to type
cvi2 iU d fd convert long to type
CVU12 iul p convert unsigned long to type
cvp2 Ill convefi pointer to type
cvf2 Id convert float to type
cvd2 If convert double to type

Memory operations (rd, rs, or%eti)
Id cucsusiululpfd load
St cucsusiululpfd store

Return to cafler (rs)
ret v iululpfd return vahre

Jumps (addr)
v jump to immediate, register, or label

~al v jump and fink to immediate, register, or label

Branch instructions (rsf, rs2t, /abe/)
blt iululpfd branch if less than
ble iululpfd branch if less than eqrrd
bgt Iuluipfd brsnch if greater thsn
bge iululpfd branch if greater tharsequal
beq iululpfd branch if eqsraf
bne iululpfd branch if not equal

Nuflary operation

I nop I no operation 1

tllris operand maybe an immediate provided its type is not ford.

Table 2 Core VCODE instructions,
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1.

.-i

typedef int (*iptr)(int);
/* Called at runtime to create a function which returns its argument + 7. */
iptr mkplusl (struct v.code *ip) {

v-reg arg[l 1;

A Begin code generation. The type string (“ %i”) indicates that this routine takes a single integer (i)
argument; the re ister to hold this argument is returned in ar [0]. V.LEAF indicates that this

? ffunction is a lea procedure. ip is a pointer to storage to hol the generated code. */
v_lambda(” %i”, arg, V-LEAF, ip);

A Add the argument register to 1. +/
v_addii(arg[Ol, arg[Ol, 1); A ADD Integer Immediate */
A Return the result. *I
v-reti(arg[Ol); A RETurn Integer*/

1+ End code generation. v-end links the generated code and performs
cleanup. It then returns a pointer to the final code. */

return (iptr)v-endo;
)

Figure 1: VCODE specification for function corresponding to int plusl (int x) { return x + 1; }

Clients begin dynamic code generation of a new func-
tion with a call to v_lambda, which takes a type string

listing the function’s incoming parameter types, a vec-

tor of registers to put these parameters in, a boolean
flag indicating whether the function is a leaf procedure,

and finally a pointer to memory where the code will be

stored. The number and type of parameters a dynamic-
ally generated function takes do not have to be fixed
at static compile time but, rather, can be determined at

runtime.

L. In v-lambda VCODE uses the parameter type string and

the machine’s calling conventions to compute where the

function’s incoming parameters are: if the arguments
m-e on the stack VCODE will, by default, copy them to

a register. At this point, VCODE also reserves space for
prologue code. Control is then returned to the client to

begin code generation.

3. The client uses VCODE macros to dynamically generate
code. During code generation the client can allocate a

number of VCODE objects: registers (using v-getreg and
v-putreg), local variables (using vdocal), and labels (us-

ing v-genlabel). After all code has been generated, the

client calls v_end to return control back to VCODE.

4, VCODE then backpatches prologue and epilogue code,

links the client code, and, if necessary, ensures instruc-
tion and data cache coherency. VCODE then returns a

pointer to the generated code to the application. This
pointer must be cast to the appropriate function pointer
type before being used.

5. The client can then run the dynamically generated code.

The VCODE backend performs rudimentary delay slot schedul-
ing and strives to keep parameters in their incoming registers.

The result is reasonably efficient code, as can be seen in the
MIPS code generated by VCODE for PIUSI:

# add 1 to argument (passed in aO)
addiu aO, aO, 1
# jump to the return address

j ra

# delay slot: move result to the return register VO
move vO, aO

For improved efficiency, VCODE provides mechanisms that
clients can use to target specific registers (such as the register

used to return results). For simplicity we do not present them

here.

3.3 Retargeting VCODE

Retargeting VCODE involves (1) constructing macros to gener-

ate executable code for each machine instruction to be used,
(2) mapping the core VCODE instruction set onto these macros,

and (3) implementing the machine’s default calling conven-
tions and activation record management. Generating the code

to emit binary instructions can be done using either VCODE’S
preprocessor or programs such as the New Jersey Toolkit [21].

Since the VCODE core is small and simple, mapping its instruc-
tions to their corresponding binary emitters is straightforward.

To aid this process, we have developed a concise preprocessor

specification language in the spirit of Fraser [11] that handles
much of the details of this mapping. Complete mapping spec-

ifications for the MIPS, SPARC, and Alpha architectures take
approximately 40-100 lines each. Finally, the construction of

calling conventions and activation record management can typ-
ically be based on existing code. For instance, the Alpha port of
VCODE is largely based on the MIPS port. To aid in the retarget-

ing process VCODE includes a script to automatically generate
regression tests for errors in instruction mappings and calling

conventions. As a result of VCODE’S simplicity and porting

assistance, a RISC retarget typically takes one to four days.
The VCODE instruction set is heavily RISC based. This

model can conflict with the underlying hardware if its archi-

tecture is very different. Surprisingly, there is no real conflict
between VCODE’S interface and that of the most widely used
CISC on the market, the x86. The main conflict that could arise
from mapping VCODE instructions to the x86 integer instruc-
tion set is the x86’s lack of registers. However, the x86 can
use memory operands in instructions instead of registers, with
little to no loss of performance. Such an ability can be used to,
in effect, support an unlimited virtual register set,
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The most serious conflict with the VCODE architecture
arises on stack-based architectures. Generating code on a stack

architecture using VCODE seems to require a post-construction

pass over the generated code to couch VCODE register names

in terms of stack positions. Fortunately, stack architectures are

relatively rare.

4 Experimental Clients

We discuss three experimental clients, The first client is a com-
piler for the ‘C language that demonstrates VCODE’S viability as
a code generation substrate [ 19]. The last two are network sub-
systems within the Aegis exokemel operating system [8]. They
demonstrate VCODE’S suitability for use in an operating system

context, and general effectiveness as a “real-world” code gen-
eration tool. (Note that since our operating system only runs

on MIPS machines, these two experiments were done on the

MIPS platform only.)

4.1 tee: a ‘C compiler

VCODE’S low-level interface makes it a good compiler target
language: compilers can rely on it to emit code efficiently
while retaining sufficient control to perform many optirniza-
tions. Furthermore, since VCODE is portable, a compiler that
compiles to it has the benefit of its generated code working on

the machines that VCODE supports.

We have implemented a ‘C compiler, tee, that uses VCODE

as an abstract machine to generate code dynamically [19]. As

discussed in Section 2, ‘C is a superset of ANSI C that provides

language constructs programmers can use to generate code at

runtime. For example, programmers use ‘C to specify expres-
sions and statements that will be generated at nmtime; these

code fragments can be dynamically composed and compiled

at runtime. tcc is based on the Icc ANSI C compiler. We modi-
fied Icc to use two code generation backends. The first backend
is used to emit assembly for traditional staticrdly generated

code. The second backend is used to compile ‘C constructs to
VCODE. The emitted VCODE is then executed at runtime to gen-

erate the code specified by the application programmer. The

use of VCODE as a target machine has allowed us to build a ‘C
compiler that runs on a variety of machines with modest effort.

Our experience using VCODE as a target machine has been

positive. Compiling to VCODE has been easier than compiling
to more traditional RISC architectures. This ease is due both

to the regularity of the VCODE instruction set and to the fact
that VCODE handles calling conventions. The use of VCODE

has allowed us to isolate most machine dependencies from
the tcc compiler itself, For instance, tcc uses the same VCODE

generation backend on the two architectures it supports (MIPS
and SPARC).

4.2 DPF

There have beerr many interpreters that dynamically compile
frequently used code at runtime [2, 4,6,13,22, 23]. In a similar

vein, we used VCODE as a dynamic compiler for a packet-filter

message demultiplexer [8, 9].

Message demultiplexing is the process of determining which
application an in~oming message should be delivered to. Packet
filters are a well-known technique used to implement exten-
sible kernel demultiplexing [17]. A packet filter is a piece
of user-level code downloaded into the kernel that is used to

Table 3: Average time on a DEC5000/200 to classify TCP/IP

headers destined for one often TCP/IP filters; times are in mi-

croseconds. DPF uses VCODE to dynamically compile packet-
filters, while PATHFINDER and MPF are both interpreter-
based.

claim packets belonging to a given application. Packet filters
are predicates written in a small safe language. This approach
allows new protocols to be implemented outside of the ker-

nel (and then downloaded into the packet filter driver), greatly
increasing flexibility.

Traditionally, packet filters are interpreted, which entails a
high computational cost. As a result, most high-performance

networking systems do not use them, despite the flexibility and

extensibility they provide. To remedy this situation, we have
implemented Dynamic Packet Filters (DPF), a new packet filter
system that is over an order of magnitude more efficient than

previous systems [8, 9]. The key to our approach is dynamic
code generation. DPF exploits dynamic code generation in
two ways: (1) by using it to eliminate interpretation overhead
by compiling packet filters to executable code when they are

installed into the kernel and (2) by using filter constants to

aggressively optimize this executable code. As a result, DPF is

equivalent in performance to hand-crafted message classifying

routines (when it can exploit runtime information, it is even

faster) while still retaining the flexibility of the packet filter

model.

An example of how DPF exploits runtime information is
how it optimizes the common situation where concurrently ac-

tive filters examine the same part of a message and compare

against different values. For instance, all TCP/IP packet fil-
ters will look in messages at identical fixed offsets for port

numbers. In static systems these values are not known at com-
pile time, and so a general-purpose, possibly expensive hash

timction must be used, along with checks for collisions, etc.
However, since DPF knows both the number and the actual val-

ues that must be compared, it can optimize the comparison in a

manner similar to how optimizing compilers treat C switch

statements: a small range of values is searched directly, sparse
values are matched using binary search, and dense ranges are

matched using an indirect jump. Additionally, since the num-
ber and value of keys are known at runtime, DPF can select
among several hash functions to obtain the best distribution,

and then encode the chosen function directly in the instruction

stream. Furthermore, since DPF knows at code-generation time
whether keys have collided, it can eliminate collision checks if

no collisions have occurred.
We measure DPF’s time to classify packets destined for one

of ten TCP/IP filters, and compare its time to measurements

for PATHFINDER [1], the fastest packet filter engine in the

literature, and MPF [24], a widely used packet filter engine.
To ensure that the comparison is meaningful, we perform the

same experiment described in [1]: the average of 100,000 trirds

is taken as the base cost of message classification. Table 3
presents the time to perform this message classification. This

experiment is more fully described in [8]. In this experiment,
DPF is 20 times faster than MPF and 10 times faster than
PATHFINDER, The bulk of this performance improvement is
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due to the use of dynamic code generation,

4.3 ASHS

ASHS are user message handlers that are safely downloaded
into the operating system kernel in order to direct message pro-

cessing [8]. VCODE has been used as part of the ASH system to
provide support for dynamic andefficient modular composition
of network protocols.

Modular composition of different network protocols has
long been a goal in the networking community [3]. Unfor-

tunately, modular composition is expensive. The problem it
presents is that each protocol layer frequently has data-touching

operations associated with it (e.g., to perform checksumming or
byte swapping). Each operation typically touches all (or most)
bytes in a message. Separating these operations into modular
pieces has meant that data is manipulated multiple times. As a
result, modularity has exacted a high performance penalty [3],

both because many excess scalar operations are performed
(e.g., looping overhead) and because touching memory multi-
ple times stresses the weak link in modern workstations, the

memory subsystem.
To solve this problem we have constructed a network sub-

system that uses VCODE to integrate protocol data operations

into .a single optimized pass over memory (e.g., integrating

checksumming and byte swapping into a memory copy opera-

tion).

We gain efficiency from VCODE in two ways. First, it allows

access to machine instructions that have no natural high-level

idiom. By writing each data processing step in terms of VCODE

it is possible for clients to write code that is more efficient than

if it were written in a high-level language. Second, it is used

to compose multiple data processing steps dynamically into a

single specialized data copying loop generated at runtime. This

system is described and measured in [9].

Table 4 shows the performance benefit of integrating check-

summing and byte swapping routines into the copying loop

from a network buffer to an application’s memory. Measure-

ments are taken both when the data is in the cache and when

it has been flushed. Even without an intervening cache flush,

the integration provides a performance benefit of 20-50%, and

is clearly worthwhile. In the case where there is a flush, the

integration almost always provides a factor of two performance

improvement. The table also shows the relative efficiency of

our emitted copying routines (labeled “ASH’) by comparing

them to hand-integrated, non-modular loops written in C. The

main reason for ASH’s better performance relative to the C

routines is that the ASH system dynamically generates a mem-

ory copying loop specialized to the operations performed by

each layer.

The use of VCODE allows flexibility not previously possible

(i.e., the dynumic composition of data manipulation routines)
while simultaneously making ASHS as efficient as previous
systems that provided neither modular nor dynamic composi-
tion (i.e., systems where data manipulation steps were merged
by hand). Due to the use of dynamic code generation, the ASH
system is a rare case where flexibility has been provided ‘<for
free.”

5 VCODE Generator Design

VCODE’S code generator emits machine code “in place.” This
section provides details of this approach and discusses a few
of its consequences,

5.1 The life of one instruction

VCODE can generate machine code in place because(1) clients

associate each VCODE instruction with virtual registers at static
compilation time and (2) VCODE’S instructions closely match
those of modem architectures. To make (2) concrete, we ex-
plain what happens to a single VCODE instruction, v.addu. Its

macro definition and expansion is given in Figure 2, along with
the machine code required to dynamically generate it. In this

case, the total cost is nine MIPS instructions. With a contigu-
ous run of VCODE instructions, some of the operations used

to generate code can be reused by the compiler compiling the
VCODE macros, bringing the total cost even lower.

5.2 Challenges of in-place code generation

Generating code in place is challenging, since it requires that
VCODE emit code without global knowledge about the function

it is creating. For instance, VCODE does not know if the func-
tion it is generating is a leaf procedure, the number of local

variables it allocates, the amount of memory (and the number

of instructions!) it needs to save floating point and temporary
registers, etc. Traditionally, such knowledge would be derived

by making at least one pass over intermediate data structures.

Unfortunately, similar methods would have added unaccept-
able overhead to VCODE. We briefly look at four of the main

challenges to in-place code generation below.
Instructions that access a procedure’s stack typically re-

quire information about the size of its activation record. For
instance, on many machines, instructions that save and restore

registers must know the activation record size in order to com-
pute offsets into the “register save area.” Similarly, accesses

to local variables must know the size in order to compute a
given local’s stack offset. Without the activation record size,

these instructions cannot be emitted. Unfortunately, this size is

not known until all code is constructed. Therefore, in order to

generate code in place, VCODE must finesse the need to accu-
rately know the activation record size. An awkward solution to

this problem would be to force clients to rdlocate all locals and

registers before any code generation occurs. In practice, thk
restriction would limit client flexibility. Furthermore, in many

cases, this restriction would hurt performance since it would
require that clients generate VCODE in two passes: the first pass

to compute the number of local variables and registers they

need, the second pass to actually dynamically generate code
using VCODE. VCODE’S solution is inelegant but workable it
simply allocates the space needed to save all machine registers
and then locates space for locals above this fixed-sized area (or

below, depending on how the stack grows). With this solution,

register offsets are known at code emission time, and offsets

for locrd variables can be computed as the variables are allo-
cated. VCODE also marks where in the generated instruction
stream the activation record is allocated and then backpatches
this instruction when the final activation record size is known
(i.e., after all locals have been allocated). VCODE’S solution is a
tradeoff of space for time. On modem RISC machines it wastes,
in the worst case, the stack space required to save 32 integer
and floating point registers (about 64 words). For clients that
find this tradeoff unacceptable it would not be hard to turn it
off on a per-function basis. We have not yet found the need to

do SO.
The second challenge deals with handling the saving and

restoring of callee-saved registers in a function’s prologue, The
problem VCODE must solve is that when a client begins gen-

erating code for a function, VCODE does not know the number
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Machine Method copy + checksum copy + checksum+ byte swap

DEC31OO separateI uncached 1630 3190
separate 1290 2230
C integrated 1120 1750
ASH 1060 1600

DEC5000 separateI uncached 812 1640
separate 656 1280
C integrated 597 976
ASH 455 836

Table 4 Cost of integrated and non-integrated memory operations. Times are in microseconds.

/* vcode instruction to add two unsigned integer registers on the MIPS architecture. */
#define v.addu(rd,rsl ,rs2) addu(rdr rsl, rs2)

/* Macro to generate the MIPS addu instruction (opcode is OX21). */
#define addu(dst, srcl, src2) (*v.ip++ = (((srcl ) cc 21 ) I ((src2) cc 16) I ((dst) cc 11 ) I 0x21))

# MIPS assembly code generated by gcc -02 to implement the ‘Jaddu” macro.
Iw VI,1244(gp) # allocate instruction
Sll al ,al ,21 # shift and then or in the register values
Sll a2,a2,16
or al ,al ,a2
Sll aO,aO,l 1
or al ,al ,aO
addiu vO,VI,4 # bump instruction pointer
Sw Vorl 244(gp) # store the new instruction pointer
Ori al ,al ,0x21 #or in the opcode
Sw al ,O(vl ) # store instruction in memory

Figure 2 Top-down expansion of the VCODE v.addu instruction,

of callee-registers that the client will use and so cannot gen-
erate the function’s prologue code. As with activation record

size, VCODE only knows how many cake-saved registers a
client used after all client code generation for the function is

complete. VCODE solves the problem by reserving space in

the instruction stream to save the maximum number of callee-

saved registers an architecture supports. This reservation is

done when code generation for a function is initiated (i.e.,

during the call to v-lambda). Register saves are then inserted

into this prologue area after the client is finished generating
code. In practice, the amount of space wasted is small (e.g.,

32-64 words of memory per generated function). The dual
of this problem is that during code generation the epilogue
code VCODE needs to generate is also not known. VCODE uses

the traditional compiler method of jumping to a piece of per-
function epilogue code when a client indicates control should

return from the function. While back-patching jumps, VCODE

does some simple optimizations to eliminate this jump if the

procedure did not use any callee-saved registers.

On many architectures, leaf procedures can be profitably

optimized. For instance, activation record allocation can be
elided and caller-saved registers can be used to hold persistent
variables. Unfortunately, VCODE cannot determine if a pro-
cedure is a leaf procedure until all code is generated. More
importantly there is, in general, no easy way to assume a pro-

cedure is a leaf for optimization purposes and then “rollback”

any code transformations: the effects of leaf optimizations can
be pervasive and, as a result, make code backpatching expen-

sive or difficult to implement. To address this problem VCODE
allows programmers to indicate if a function is a leaf proce-
dure. If the client attempts to call a procedure from the func-

tion, VCODE signals an error. However, this is not a complete
solution: VCODE instructions may cause function calls, For
instance, on machines that do not provide division in hard-
ware, the VCODE integer division instructions require subrou-

tine calls. To preserve portability, these calls should not cause

the user-program to get a runtime error from VCODE. In the

worst case VCODE ignores client hints when running on those

machines. Fortunately, routines that emulate common machine

instructions frequently obey different calling conventions than

normal subroutines in that they save all caller-saved registers.
In this case VCODE is able to call the emulated routine after

saving the registers used to pass its arguments.
A final problem not necessruily unique to in-place code

generation is the handling of floating point immediate, Un-
like integer immediate, many architectures do not provide

support for encoding floating point immediate in arithmetic
instructions. As a result, a dynamic code generation system

must allocate space for them and load them from this space.

To make garbage collection of floating-point constants easy,
VCODE places them at the end of a function’s instruction stream.

In this way, the space for the immediate is easily reclaimed
when the function is deallocated.

5.3 Violating VCODE abstractions

An often-ignored aspect of fast systems is the question of how
to allow high-level interfaces to be gracefully violated for im-
proved performance or control. Since we use VCODE in situa-

tions where every cycle is precious and where the environment
has peculim constraints (e.g., operating system interrupt han-

dlers), we have designed mechanisms into VCODE to allow
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clients to violate VCODE abstractions in order to achieve both

more efficient code generation and more efficient generated
code. We briefly outline three of these mechanisms below.

Clients can dynamically control the register class VCODE
assigns to each physical register (cake-saved, caller-saved, or

unavailable). This allows clients to use VCODE’S generated code
in situations where normal register conventions do not hold.
For instance, in an interrupt handler all registers are “live,”

Therefore, for correctness, VCODE must treat all registers as
“callee-saved.”

Clients that wish to trade register allocation flexibility can
obtain faster code generation spetds by using hard-coded regis-
ter names. This reduces the cost of code generation by approx-
imately a factor of two. To support this optimization, VCODE
provides architecture-independent names for temporwy (“TO”,

“TI”, etc.) and callee-saved registers (e.g., “SO”, “S1”, etc.).

Clients (in this case, typically compilers) use these names in

their VCODE instructions. Since these names are constants, the

C compiler can perform constant folding and reduce the over-

head of dynamic code generation to the loading of a 32-bit
immediate into a register and the storing of this register into

memory (approximately five instructions). We note that while

this mechanism was originally intended to make code genera-
tion faster, it also supports a form of “register assertion”: clients
that use it will get compilation errors if the machine they are

being compiled for does not support the number of temporary
and variable registers that they require. Such errors could be
used to select different code to compile (e.g., code that either

uses virtual registers or fewer physical registers).
Finally, clients that are willing to deal with a lower-level

and more dangerous interface are able to perform instruction

scheduling of loads and branch delay slots without impact-

ing code generation speed. The basic problem with portably

exposing delay slots within the VCODE instruction set is that

reconciling them with the underlying machine can be expen-
sive. In general, it requires some form of per-instruction check.
For instance, if VCODE jump delay slots were one instruction

and the underlying machine did not have delay sIots, then ev-
ery instruction would have to check if it was in a “logical”

delay slot and, if so, swap places with the already generated
jump instruction. Performing this switch would not be trivial,
since a jump instruction could have expanded to be several in-

structions. Fortunately, the solution is simple. VCODE includes

two macros: v.schedule-delay and v-rawJoad that are used by
clients to schedule instructions across branches and loads re-

spectively. The first macro takes a VCODE branch instruction

definition (e.g., v-bneii(rs, 10, label)) and an instruction to put
in its delay slot. If the machine has delay slots and the instruc-

tion fits in the delay slot, VCODE inserts the instruction in the
delay slot. Otherwise this instruction is simply placed before
the branch in the instruction stream. The v-raw-load macro is

even simple~ it takes a memory instruction as an operand along
with a count of the number of VCODE instructions that will be

emitted before the result is to be used, If this number is less
than the number of cycles required to safely make the result of
the load available, VCODE will insert the required number of

“nops.” With these macros, clients are able to portably and effi-
ciently schedule load and branch delay slots without affecting
code generation speed.

5.4 Extensibility

The VCODE system is simple and modular. These character-
istics make it easy to dynamically reconfigure and extend.

For instance, we have built a sophisticated strength reducer

for multiplication and division by integer constsmts on top of
VCODE; support for unlimited virtual registers could be added

in a similar manner. Clients can dynamically substitute calling

conventions on a per-generated-function basis.

An example of VCODE’s extensibility is the ease with which
its instruction set can be extended. As discussed in Section 3,

the elimination of intermediate structures contributes the most
to this feature as it removes the need for VCODE to understand
instruction semantics. With intermediate data structures, ex-

tension is more complex, since any extension must be couched
within the context of a well-formed data structure.

VCODE provides a preprocessor that consumes a concise

instruction specification and automatically generates the spec-
ified set of VCODE instruction definitions. A simplified form of

this specification is:

‘(’ base-insnmame
‘(’ paramlist ‘)’

,), [ ‘(’ type-list mach_insn [ math-imm_insn ] ‘)’ ]+

Each base-insnmame is composed with each type-list and

mapped to the associated register-only machine instruction
(math-insn) and, if it is given, the associated immediate in-

struction (math-imm-insn). Machine instructions are usually
provided by VCODE itself. However, on machines with large
instruction sets, VCODE may negh?ct to specify all instmctions

and the client must then provide any missing instructions that
it needs.

For instance, the following client specification adds a square-

root instruction on the MIPS:

(sqrt (rd, rs) (f fsqrts) (d fsqrtd))

This specification composes the base instruction type sqrt
with the two types f (float) and d (double) and associates them

with the target MIPS instructions fsqrts and fsqrtd, respectively.

It generates the following VCODE instruction definitions:

#define v~qrtf(rd,rs) fsqrts(rd,rs)
#define v~qrtd(rd,rs) fsqrtd(rd,rs)

To simplify instruction extension, our specification lan-

guage includes facilities for constructing more complicated

sequences of instructions, acquiring access to scratch regis-
ters, and couching new instructions in terms of existing VCODE
instructions.

Thus, a single line in a preprocessing specification can
add a new family of instructions. By additionally couching an
extension in terms of the VCODE core (or other extensions),
a client can ensure that its extensions will be present on all

machines,

6 Discussion

A reasonable question to ask is how fast a dynamic code gen-
eration system must be before it is “fast enough.” The main
determinant of this question what actions a client must take
during code generation: dynamically generated code is gen-
erally not created ex nihilo but rather is based on client data
structures. Traversing these data structures to determine what
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code to emit can consume tens or even thousands of instruc-

tions (e.g., in the case of compilation from a high-level source).
As a result, VCODE’S performance is likely to be more than
sufficient for most applications. Furthermore, as we show in

Section 5 clients can use hard-coded register names and reduce

this overhead by about a factor of two.
This section reports on our experience using VCODE and

some limitations of the current system.

6.1 Experience

VCODE has been in daily use in real systems for over a year. It

has proved to be a useful tool and has performed well in de-
manding situations. For instance, the DPF system we described

earlier in the paper is used as the packet filter system for the

Aegis exokernel operating system [8].
A nice practical feature of VCODE is that its complexity

is mostly horizontal rather than vertical: each additional piece
of the VCODE system usually does not depend on others. As

a result, each extension increases the number of system states
roughly additively rather than mukiplicatively. This feature

makes testing more simple than the DCG system that vcorxl
descends from. The most common error we have found is the
mis-mapping of VCODE instructions to machine instructions.

Compared to the complexities of finding code generation bugs
in full-fledged compilers, this is a fairly benign error, easily

caught with automatically generated regression tests.
One disappointment in the implementation of VCODE is

the inadequacies it exposed in current compiler and linker im-
plementations. There were three main problems the VCODE
implementation continually ran into: linkers which brought in

all routines from a file rather than those needed, compilation of
inlined routines that were not referenced, and inefficient han-

dling of word-sized structures. A VCODE machine specification

generates many procedures (one for each VCODE instmction).
Most of these procedures will not be used by a given applica-

tion. Unfortunately, if these procedures are stored in a single

file, all Unix linkers we used linked in the entire file rather than

simply pulling in the VCODE procedures that were needed. This

space overhead was unacceptable, especially when the solution

was not difficult to implement. The second problem was less

easy to solve, but just as detrimental. For high performance,
it is appropriate to inline most VCODE instruction invocations.
Unfortunately, those few compilers that provide an inline di-
rective will parse all inline functions, even if they are “static”

and not referenced by any procedure in scope. Since VCODE
creates a procedure per VCODE instruction this problem leads

to long compilation times. VCODE’S solution to this problem
and the previous one was to use macros to implement VCODE

instructions: macros do not take up space when they are not

referenced, and they are fast to parse. Unfortunately, this is far

from a perfect solution, since it can cause a space explosion if

many VCODE instructions are used, The final problem was how
badly many compilers handled word-sized structures: rather
than allocating the structure to a register and operating on it
directly, most compilers we used would load and store the struc-
ture to memory on every operation. This was true even when

the structure contained a single unsigned integer. Since VCODE
registers are represented asC structures (to allow stronger type
checking than would be possible with a unwrapped integer),

this overhead could add a noticeable cost to every VCODE in-

struction. We solved this problem by allowing VCODE to be
optionally compiled to represent registers using integers.

6.2 VCODE limitations

While VCODE has been useful in practice, it has four main
drawbacks: the lack of a symbolic debugger, limited registers,

no peephole optimizer and no instruction scheduler. Of the

four, the first is the most critical: debugging dynamically gen-
erated code currently requires stepping through it at the level

of host-specific machine code. If one does not have a working
knowledge of this instruction set, making sense of the debug-

ging output is challenging. Fortunately, fixing this problem is
not difficult. With modifications, the preprocessor could auto-

matically generate a debugger from the machine specification
files. Each instruction would be “interpreted” by generating

it using VCODE and recording its effects. A nice consequence

of this arrangement is that client-added instructions can be
incorporated into the debugger automatically.

We are currently adding support for unlimited virtual reg-
isters as a VCODE extension layer. preliminary resuks indicate
that the addition of this (optional) support would increase code

generation cost by roughly a factor of two. However, we note
that in the systems we have built so far the current VCODE ar-
rangement of client-managed registers has not presented prob-

lems.

On machines where VCODE instructions map more or less

directly to native instructions (e.g., tbe MIPS architecture), the
lack of a peephole optimizer has not noticeably hurt the qual-

ity of VCODE’S generated code. However, on machines where a

single VCODE instruction can map to multiple machine instruc-

tions, a peephole optimizer would be useful. For instance, the
current generation of Alpha chips lack byte dnd short word op-

erations. As a result, VCODE must synthesize its load and store

byte instructions from multiple Alpha instructions. This emu-
lation can require a large number of instructions: in the worst

case an “unsigned store byte” instruction requires eleven Al-

pha instructions and five temporary registers ! These emulated
instructions typically compute useful intermediate results that

a peepbole optimizer could reuse. Unfortunately, the current

implementation of VCODE cannot similarly exploit these regu-

larities since it has an extremely local view of code generation

(i.e., a single VCODE instruction). Future work will include im-

plementing a vcoDE-level peephole optimizer for clients that

wish to trade runtime compilation overhead for better gener-

ated code.
Of all drawbacks, the lack of an instruction scheduler is

the least critical. Most instruction scheduling can actually be
handled above VCODE by separating register uses from def-
initions. Clients that wish to micro-schedule delay slots can

do so using VCODE’S portable instruction scheduling interface.

Furthermore, current architectural trends are to deep instruc-

tion reorder buffers (e.g., 64-entries deep). At this level, static

instruction scheduling is not particularly important. 2

7 Conclusion

We have presented VCODE, a fast, retargetable and extensible
dynamic code generation system. It generates machine code at
an approximate cost of ten instructions per generated instruc-
tion, which is roughly 35 times faster than the fastest equivalent

system in the literature [10]. It can be retargeted to RISC ma-

chines in approximately one to four days. Finally, it allows
many levels of the system to be parametrized at runtime.

VCODE provides a portable, idealized RISC instruction set
to clients. Clients use this interface to specify dynamically

‘This insight is due tn ToddPmebsting.
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generated code from witiln applications. VCODE generates ma-

chine code in place, without the intermediate passes typical of

other code generation systems. As a result, VCODE is substan-
tially faster than previous systems and consumes little memory

during code generation. An important side-effect of eliminat-
ing intermediate data structures is that the VCODE instruction

set can be readily extended by clients since VCODE does not
enforce any particular semantics on instructions.

VCODE is not a toy system. We have used it extensively
in the networking subsystem of our experimental exokernel
operating system [8] and as a compiler backend for an extension
of ANSI C that supports dynamic code generation.

VCODE both generates code efficiently and generates effi-
cient code. Its interface and abilities make it useful for a broad

class of clients. VCODE is the first general-purpose dynamic

code generation system to generate code without the use of
an intermediate representation, the first to support extensibil-
ity, and the first system to be made publicly available (source

can be obtained from the author). We hope that the availabil-
ity of VCODE will help raise dynamic code generation from a

curiosity to its rightful position as a common optimization tool.
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