
Experience with the Development of a Microkernel-Based, Multiserver Operating
System

Freeman L. Rawson I11
IBM Austin

Abstract

During the first half of the 1990s IBM developed a set of
operating system products called Worhplace OS that was bused
on the Mach 3.0 microkernel and Taligent’s object-oriented
TalOS. These products were intended to be scalable, portable
and capable of concurrently running multiple operating system
personalities while sharing as much code as possible. The
operating system personalities were constructed out of a set of
user-level personality and personality-neutral servers and
libraries. While we made a number of important changes to
Mach 3.0, we maintained its fundamentals and the multi-server
design throughout our project. In evaluating the resulting system,
a number ofproblems are apparent. There is no good way to
factor multiple existing systems into a set of functional servers
without making them excessively large and complex. In addition,
the message-passing nature of the microkernel turns out to be a
poor match for the characteristics of modern processors, causing
performance problems. Finally, the use of $ne-grained objects
complicated the design and jirther reduced the pe rformance of
the system. Based on this experience, I believe that more modest,
more tavgeted operating systems consume faver resources, ofer
better performance and can provide the desired semantics with
fewer compromises.

Introduction

At the beginning of the 1990s IBM was interested in
reducing the number and diversity of its non-mainframe
operating systems. IBM was investing in OS/2 and PC DOS
for Intel-based PCs, AIX for the RSl6000 workstation and
server line and OS1400 for the ASI400. Moreover, none of
them offered all of the characteristics that seemed necessary.
As a result IBM made a major investment in a set of new
technologies intended to create an operating system - that was easily portable from processor to processor and

platform to platform
whose interfaces and implementation scaled from very
small embedded systems to very large clusters and MPs
which supported multiple operating system personalities
concurrently and could be configured to provide the “look

.

.

and feel” of any operating system in the set while
maintaining a single system image

. that shared as much code as possible among the
personalities

. that offered full compatibility with all of the operating
systems in the set and with DOSlWindows 3.1

+ which offered the choice of a fully object-oriented
operating system including both object-oriented interfaces
and an object-oriented implementation

- which provided real time operation.
Since the technologies were modular, the project was

structured as a set of related products so that customers could
buy precisely the parts that they needed. The project as a
whole was known as Workplace OS (WPOS) but was often
referred to as the “microkemel-based” system because of the
central role played by the microkernel and because the
microkernel was marketed separately as the IBM Microkemel
Product.

The foundation of the project was the adoption of the
Mach 3.0 microkernel from Camegie Mellon University [l 11
and the TalOS or Pink operating system from Taligent. Based
on the work of Julin [5] , we concluded that the facilities of
Mach 3.0 with some extensions were sufficient to permit the
construction of a set of concurrently executing operating
system personalities that were created out of a user-level
personality server or servers and a set of non-personality or
personality-neutral services. These services were either user-
level servers or shared libraries. Most of the actual function
was in the personality-neutral services to avoid complex
cooperation algorithms between personalities, a single,
always required personality or the loss of single system
image. Figure 1 shows the structure of our system.

Despite the level of investment and the adoption of what
was deemed to be the best of operating systems research and
advanced development of the 1980s, the project, in retrospect,
was not a technical success. For both business and technical
reasons, it was terminated in March, 1996, after shipping two
releases of the IBM Microkernel and a single limited release
of OS12 Warp for the PowerPC. The rest of this paper briefly
describes the key features of the system and then provides a
technical evaluation of the design approach and
implementation.

0-8186-7834-8/97 $10.00 0 1997 IEEE
2

I x - 1. - _ ” ”
” ” ”

, ,- ” .

x x

ALTERNATE OS APPLICATIONS
I
I PRIMARY OS APPLICATIONS

Device Frameworks

Figure 1 The IBM Microkernel and Workplace OS

The IBM Microkernel - passed data too large for the message body by reference,
copying it across from sender to receiver .

. replaced virtual with physical copy
optimized and simplified all of the user-level stubs and
server loops
simplified message processing inside the microkernel and

The IBM Microkernel consisted of three major
components--the microkemel proper, some user-level
personality-neutral services and a set of device drivers. -
Microkernel

The basic facilities of the microkemel were those of Mach
3 .O plus several additions and included

- tasks and threads
w virtual memory management

- hosts and processor sets
. clocks and timers - synchronizers.

Of these components, I/O support, clocks and timers and
synchronizers were new while the others were inherited from
Mach 3.0.

Of the pre-existing components IPC changed the most
during the course of the project: our work was heavily
influenced by [6]. Although the basic concepts of port and
message were maintained, the change was so radical that we
renamed IPC “RPC.” Much of the work was careful software
engineering, but we also

. made message delivery and in most cases reply

-
- removed message queuing

* IPC/RPC

- I/Osupport

removed reply ports

synchronous
blocked threads waiting to send or receive messages

the user-level stubs used to call microkemel interfaces
removed mach-msg and the old implementation of IPC.
The result was a two to ten times improvement in

message-passing performance with the improvement’s
magnitude depending primarily on the number of bytes
transmitted. We were constrained by the semantics of the
other code already under development, and this limited how
closely we could approach the performance of [6]. Even with
these improvements, RPC performance was deemed to be a
problem to the very end of the project.

We also made a number of changes to virtual memory
management including implementing the OSF RI interfaces
for external management [I]. Since we ported the system to a
number of different processor architectures, we wrote a
number of different pmap routines [131 including ones for
ARM and several forms of PowerPC. However, the most
important change was the introduction of the notion of
coerced memop-shared memory that is shared at the same
range of addresses in every address space. This change is an
example of the impact of supporting the semantics of an
operating system other than UNIX. Since 0 3 2 programs
assume that if memory is shared, it must be at the same
address range in every address space that shares it, the
microkemel had to support such a layout.

Mach 3.0 had no precursor to I/O services: its device
drivers were linked into the microkemel and directly called
any intemal routines that they needed to use. We added

3

several different sets of IiO services during the course of the
project to support different device driver models. All of these
implementations provided: . mapping of I/O ports and memory into the address space

of the device driver
. loading of interrupt handlers
. interrupt vectoring, revectoring and possibly reflection to

a user-level device driver
. DMA channel management and transfers.

The time management in Mach 3.0 was very limited, and
we implemented a much more extensive time management
component. Mach 3.0 also had no notion of synchronization
other than that which can be constructed using the IPC
system. Since this was too expensive and too hard to program
for many uses, we implemented a comprehensive set of
synchronizers including both memory- and kernel-based
locks and semaphores.

Microkernel Services

The IBM Microkernel also included some basic user-level
personality-neutral services--a personality-neutral runtime
environment, a program loader, a default pager and a name
service--as well as a booter. These were usually called
Microkernel Services to avoid confhion with the generic
notion of personality-neutral services. The runtime, the
naming service and the loader merit further discussion.

The IBM Microkernel had a set of personality-neutral
runtime libraries that provided an ANSI C run-time, the user-
level portion of the memory-based synchronizers, a threading
package based on the C threads package from Mach 3.0 and
some supplemental interfaces modeled on portions of the
POSIX standard. This runtime was essential to the goal of
supporting personality-neutral code and operating system
personalities without requiring UNIX. In contrast, CMU’s
Mach 3.0 had only a UNIX runtime and ran very little user
space code except inside a UNIX process.

Since the IBM Microkernel like Mach 3.0 used intemal
capabilities, so that port rights have meaning only within the
context of a port space, and since there was no way to resolve
names to ports and ports to names in the microkernel itself.
the system needed a name service to let clients and servers
find each other. We based our interfaces on a subset of the
X.500 architecture to support storing attribute information
with names, complex naming formats, sophisticated search
mechanisms and notifications on name space alteration. Other
components including the loader, the OSi2 personality and
some of the device drivers made heavy use of these features.
However, this design was sufficiently expensive that Release
2 of the IBM Microkernel added an alternative, much
simplified name service for embedded configurations.

The Microkernel Services loader loaded programs and
shared libraries into address spaces. Originally, the loader

was intended to be universal, loading all programs and
libraries. Since the original design was that personality-
neutral tasks and operating system personality processes did
not share libraries, each address space had only a single load
module format and a single set of loader semantics. We chose
the ELF format and initially the SVR4 semantics for
personality-neutral code. We subsequently modified this
scheme to permit mixing personality-neutral and personality-
specific code in an address space, support address coercion of
shared libraries with a more restrictive symbol resolution
semantics and limited the Microkernel Services loader to
loading programs prior to the initialization of the first
personality.

Device Drivers

Mach 3.0 used reworked BSD UNIX device drivers linked
into the kernel. These were not acceptable in an IBM product
for many reasons including code ownership, limited range of
supported devices and the lack of a “device driver model” to
make the support of additional devices a small rather than a
large coding task. We developed a number of replacements.
Our initial design was described in [3] and put almost all of
the driver code except the interrupt routines in user space. It
implemented the notion of a hardware resource manager to
assign hardware resources representing device access paths to
drivers based on a requestlyieldlgrant scheme. Subsequently,
several other device driver architectures were used with the
system. There was some continuing use of drivers in the
kernel with a BSD-like structure, especially for networking,
but the most architecturally important work was Taligent’s
Object-Oriented Device Driver Management (OODDM).
This device driver architecture was based on fine-grained
objects with the goal of making the implementation of a new
driver no more than the creation of a subclass with a few lines
of unique code. The drivers were mostly in the kemel and
required an intemal kernel C++ runtime as well as a number
of supporting classes to export kernel services.

Workplace OS

Workplace OS was the set of operating system
personalities--Taligent’s TalOS, OS/2, UNIX and MVM--a
DOSiWindows environment--that IBM created on top of the
microkernel. It also included a project to merge OSl400, the
ASi400 operating system, into the microkernel environment.
Since this effort used a different design approach which was
uniquely tailored to the ASl400, it is not described here.

4

Shared Services

WPOS included several major pieces of additional
personality-neutral code, known as shared services, beyond
those in Microkernel Services. The file server was a good
example of the type of personality-neutral, standard server
that was envisioned as a basic functional building block for
all operating system personalities in WPOS. It was a separate
user-level task that provided a generic set of file system
services and internally used an extended vnode architecture to
support a variety of physical file system implementations
including FAT, OS/2 HPFS and AIX JFS. The design of the
file server made heavy use of ports to manage open files as
well as aggressive memory mapping techniques to buffer file
data and to share buffers with its clients. Although the file
server did its own directory management, it was designed to
work with the name service so that all file systems could
appear as a part of WPOS’s single rooted tree of names.

Another important shared service was the
communications and networking code which was based on
Taligent’s networking frameworks. This was implemented in
C++ using fine-grained objects and required a set of C++
wrappers for the interfaces exported by the microkernel.
Taligent’s notion of fine-grained objects involved the use of
complex class hierarchies and extensive subclassing to
maximize code reuse. This resulted in a very large number of
very short virtual methods. The wrapper classes, rather than
being a simple, stateless representation of the kernel
interfaces, exported a significantly different set of interfaces
that forced them to maintain state.

TalOS

Initially, the key operating system personality for
Workplace OS was Taligent’s operating system, TalOS,
whose application interface was what became the
CommonPoint programming environment [121 and included a
set of file system facilities, access to communications and a
graphical user interface. TalOS was based on the same
principles as the networking code, using fine-grained objects,
a C++ implementation, and the same C++ microkernel
wrappers. The implementation of the TalOS personality was
never finished.

os12

Second only to Taligent in importance was the OS/2
personality [lo]. For OW2 the goal was to construct its
function using the building blocks of a relatively large
number of personality-neutral services including the loader,
the name service, the file system and the networking and
communications code. The design was for an implementation

of 32-bit OS/2 only and did not include the original 16-bit
interfaces. The OS/2 server provided the OS12 kernel
implementation, but not the Presentation Manager since it
and the desktop were user-space programs implemented as
shared libraries: these were converted to 32-bit C code but
othenvise left unchanged from their previous
implementations.

OS12 on the microkernel was typical of our design for
personalities. Each OS/2 process received a microkemel task
in which to execute, and each OS/2 thread became a
microkernel thread. OS/2 programs were loaded into
processes together with some additional shared libraries that
provided RPC stubs for accessing function in the
microkernel, in Microkernel Services, in shared services and
in the OS/2 server. Wherever possible, some of the function
was actually implemented in the libraries themselves to
reduce the amount of interaction with the microkernel and
other servers.

UNIX and MVM

Mach 3.0 had come with a UNIX implementation known
as UX [2]. UX was an implementation of BSD UNIX that
had been created by separating the UNIX h c t i o n from the
Mach code in Mach 2.5 and putting it into a single user-level
server task running on the microkernel. Since our goal was a
multi-server implementation and since UX was out-of-date,
we elected to discard it. We planned to replace it with an AIX-
compatible implementation based on the personality-neutral
server structure, but this project did not progress very far
before being dropped.

The last major piece of Workplace OS was the MVM
server [4] whose design was an extension of that of [8].
MVM provided multiple DOS and Windows 3.1
environments, each in its own microkemel task, as well as
implementing the DOS Protected Mode Interface (DPMI).
MVM consisted of a small server plus a set of shared libraries
that were loaded into each MVM task. The shared libraries
handled the traps generated and used virtual device drivers to
communicate with the real device drivers for hardware
access. We used the DOS and Windows 3.1 binaries to get the
required operating system function. On the PowerPC MVM
also included the instruction set translator that translated
blocks of Intel instructions to PowerPC instructions for
execution.

Evaluation

There are a number of ways to evaluate Workplace OS
and the IBM Microkernel. I will look at it from a technical
perspective and focus on the semantic choices, performance
implications of the design and the use of fine-grained objects.

5

Semantics

One major difficulty with using a set of personality-
neutral servers to create a number of different operating
system environments was in defining the semantics of the
various servers. There was a sense in which the division into
servers was reasonably straightforward, but if the interaction
with the operating system personality was to be minimized,
all of the stateful semantics of each supported operating
system had to find their way into the personality-neutral code.
Thus, for example, the file server had to implement the union
of the TalOS, the OSi2 and the UNIX file system semantics:
we were saved from having to include DOSNlTindows since
OSi2’s file system semantics are a reasonable approximation
of those of DOSiWindows. Unfortunately, there were places
where this type of combination inevitably led to
inconsistencies and implementation compromises. Even
where a consistent result compatible with all of the operating
system personalities was possible, the resulting
implementation was big and complex.

Another problem was with data formats. To be acceptable
the system had to permit the use of all of its predecessors’
key on-disk data formats, especially its physical file system
formats. This created a number of problems since despite the
best efforts of file system architects there are places where the
physical format limits the logical processing allowed or
forces semantic or implementation choices in the code. A
good example is the old FAT format used by OSi2: it supports
only 8 character file names followed by a “.” followed by 3
character extensions. There was no good way to jam long file
names into the OS12 FAT file format without generating an
incompatibility.

There were also some semantic inconsistencies between
the microkernel and the requirements of the operating
systems. Mach 3.0 had been designed to make heavy use of
copy-on-write, lazy allocation and large, sparse address
spaces at some cost in both size and complexity. Its memory
management was page-oriented and did not retain the
allocation size. OSi2 programs assumed a commitment-
oriented memory management system with eager allocation
and relatively minor use of copy-on-write. Worse, OSi2’s
memory management was on a byte basis and assumed that
the operating system retained allocation sizes. The result was
essentially two memory management systems, with OSI2’s
built on the microkernel’s, which, while workable, greatly
increased the memory footprint.

Performance

A key question about microkernel-based systems has
always been their performance, and that was certainly true in
the case of the IBM Microkernel and WPOS. There are two
sets of numbers that are particularly useful in understanding

the performance characteristics of WPOS. The first is a
simple comparison between OS/2 Warp on Intel and OSi2
Warp for PowerPC on a set of OS/2 benchmarks. The
hardware being used here, a 133 MHz Pentium for OSi2 on
Intel and a 133 MHz 604 for WPOS are roughly comparable.
However, the PowerPC machine had 64 MJ3 of memory while
the Pentium machine had 16 MB.

As these numbers show, the performance was comparable
or better with the microkemel-based system for the graphics-
intensive code where the test programs ran primarily at user-
level in shared libraries and directly drove the screen buffer.
However, interacting using RPC with the file server and the
device drivers cost about a factor of 3 in performance versus
a standard in-kemel implementation.

The second set of numbers was taken on a Pentium
implementation of the microkernel using the performance
counter hardware available there to compare RPC versus trap
times. The microkernel’s traps were conceptually no different
from those used to implement most services in a standard
operating system, so these numbers serve to illustrate the
overhead introduced by using RPC for service access instead
of a trap. The particular trap measured, thread-selfo, returned
the thread port for the current thread while the 32-byte RPC
transferred 32 bytes of data from the client to the server but

Table 2: Trap Versus RPC
Not only did the W C require more instructions, but it had

a much higher cycles per instruction metric indicating that the
processor was stalling and being used less efficiently. More

6

detailed measurements showed that this is due to in large
measure to misses on the I-cache.

Fine-Grain Objects

There has been and continues to be a significant amount
of research into object-orientation in operating systems. The
Workplace OS experience suggests that fine-grained objects
in C++ are not appropriate for operating systems. The sheer
complexity of the class structure proved to be overwhelming:
operating systems are complex enough without making them
even harder to write. Since C++, as we used it, effectively
froze the class structure in library code with the initial
version, we found the inflexibility of the implementation to
be a burden. The maintenance of state in the microkernel C++
wrappers further increased the size and complexity of the
system. Moreover, having a very large number of virtual
method calls slowed the system down. Finally, we found that
having C++ runtimes in the kernel and user space consumed
considerable amounts of memory. Many of these problems
were avoided in the Open Group’s MK++ work [9] by
carefully restricting the use of virtual methods and
subclassing, combined with extensive inlining. However,
MK++’s design does not provide the same level of code reuse
that Taligent’s did.

Conclusion

There is no good reason to believe that the function of
multiple existing operating systems can be factored into a set
of servers or services in such a way that they can be
efficiently reconstructed by assembling parts. Moreover,
operating systems whose paradigm is message passing and
context switching, especially address space switching, are a
poor match for the characteristics of today’s processing
engines which build up and maintain state internally as they
execute. Liedtke [7] has been able to overcome a number of
these problems at the price of making the microkernel more
limited in its function than ours was and making it totally
machine-dependent. However, even Liedtke’s implementation
of a multiserver operating system would have more overhead
than a standard kernel implementation of comparable quality.
Finally, the introduction of fine-grained objects and extremely
complex classes has two negative effects. First, it exacerbates
the performance problems. Second, it increases the
complexity of the implementation. Although there will
continue to be good reason to use object-orientation in
operating systems, especially that of the form found in
MK++, our experience suggests that simpler, coarser objects
are more appropriate. In general, more modest, more targeted
operating systems consume fewer resources, offer better

performance and can provide the desired semantics with
fewer compromises.

References

[11 Randall Dean, Michelle Dominijanni. “An RPC-Based External
Memory Management Interface: Architecture.” OSF Research
Institute, Cambridge, MA, April, 1994.
[2] David Golub, Randall Dean, Alessandro Forin, Richard Rashid.
“Unix as an Application Program.” Proceedings of the USENfX
Summer Conference, June 1990.
[3] David B. Golub, Guy G. Sotomayor, Jr., Freeman L. Rawson 111.
“An Architecture for Executing Device Drivers as User-Level
Tasks.” Proceedings of the Third Usenix Mach Symposium, April,
1993.
[4] David B. Golub, Ravi Manikundalam, Freeman L. Rawson 111.
“MVM--An Environment for Running Multiple DOS, Windows and
DPMI Programs on the Microkernel.” Proceedings of the Third
Usenix Mach Symposium, April, 1993.
[5] Daniel P. Julin, Jonathan J. Chew, J. Mark Stevenson, Paulo
Guedes, Paul Neves, Paul Roy. “Generalized Emulation Services for
Mach 3.0: Overview, Experiences and Current Status.” Proceedings
of the Usenix Mach Symposium, November, 199 1.
[6] Jochen Liedtke. “Improving IPC by Kemel Design.” 1993 ACM
Symposium on Operating System Principles, 1 993.
[7] Jochen Liedtke. “Toward Real Microkemels.” Communications
ofthe ACM, volume 39, number 9, pages 70-77, September, 1996.
[SI Gerald Malan, Richard Rashid, David Golub, Robert Baron.
“DOS as a Mach 3.0 Application.” Proceedings ofthe Usenix Mach
Symposium, November, 1991.
[9] MK++ Kernel High Level Design. The Open Group Research
Institute, 1996.
[IO] James M. Phelan, James W. Arendt, Gary Ormsby. “An OS/2
Personality on Mach.” Proceedings of the Third Usenix Mach
Symposium, April, 1993.
[I I] Richard Rashid, Robert Baron, Alessandro Forin, David Golub,
Michael Jones, Daniel Julin, Douglas Orr, Richard Sanzi. “Mach: A
Foundation for Open Systems.” Proceedings of the Second
Workshop on Workstation Operating Systems, IEEE Computer
Society, pages 109-1 13, September 1989.
[121 The Power of Frameworks, Addison-Wesley, 1995.
[131 Avadis Tevanian, Architecture-Independent Virtual Memoq
Management jor Parallel and Distributed Environments: the Mach
Approach. Ph.D. dissertation, Carnegie Mellon University,
December. 1987.

Trademarks

AIX is a registered trademark of the International Business Machines
Corporation. IBM is a registered trademark of the International Business
Machines Corporation. OW2 is a registered trademark of the lntemational
Business Machines Corporation. Pentium is a registered trademark of Intel.
POSIX is a trademark of the Institute of Electrical and Electronic Engineers
(IEEE). PowerPC is a trademark of the International Business Machines
Corporation. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through the X/Open Company Limited.

7

