Slab Allocator Project

Assigned: 9' February 2009, Due:"2 March 2009

1 The Project

In this project you must implement the slab allocator as dlesd in Jeff Bonwick’s paper [1].
Your implementation must conform to the interface spediticegivens!| ab. h (which is self ex-
planatory). Your result should be designed as a (statigfybthat implements the above interface.
Your implementation must keep the total internal fragmeomabelow 12.5%. The differences
with respect to Bonwick’s paper are:

1. The assignment is to implement application level slab allocator rfot a kernel memory
allocator). This allocator should obtain its storage ugmgnmmap() system call, which
allocates a specified numberueges.

2. Slab deletion is done whenever theemcache_r eap() call is made, not in response to
memory pressure. Usaunmap() to return the memory to the operating system.

3. You donot have to implement the self-scaling hash table alluded t@atien 3.2.3 of the
paper [1] — this is surprisingly hard to do well. You can uséwapde, unbalanced binary tree
implementation or borrow an existing AVL tree implemenrtat{note that this data structure
must be able to handle delete operations).

At / hone/ sl ab on the machines418. cs. j hu. edu, you will find the following files:
1. sl ab. h — The interface specification.

2. sl ab-tester.c — A sample testing program. There are certain compile timé&hes
within the program. You can use them to control the degreesiirtg while dev elopement.

3. obj ect s. def — Object definitions for the test program. Feel free to adeotbject
definitions in the same pattern for extended testing.

4. Makefi | e —the Makefile.
5. sl ab. ¢ — a stub implementation file.

You must submit implementation files along with the updatalief i | e as a tarball.

2 Notes

3

a oA w NP

. You must not makany changes to the header file.
. You can obtain the correct value for PAGEZE by including usr /i ncl ude/ sys/ user. h.

. Your implementatiomust not usemal | oc() ever.

Your implementation must not rely on the test program fosthing.

. You are strongly encouraged to keeptW&l | - Wer r or options to the C compiler. Most

warnings are genuine errors.

. You are encouraged to study the test program as it serwedgersled behavior specification.

You are also encouraged to start using it as early as possible

. Based on previous years’ experience, yousdrengly encouraged to use a configuration

management system (CVS, Subversion, and Mercurial ar@ledioncs418).

Grading

. Grading will be based on

e Whether your allocator works correctly (without faults).
e Whether particular things that the allocator needs to dkworrectly:
— Object Caching.
— Slab size selection — handling small/large/huge objects.
— Slab allocation and deallocation.
— Allocation and deallocation of backing store.
— Coloring.
e Code Quality.
e Correct implementation of the debugging interface.

. Atest-program is provided for your convenience. We nes#re right to run other test cases.

. Your homework will be tested on tleess418 machine, and must therefore compile and run

on it.

. Code that does not compile, f def ed /commented out codetc. will receive no credit.

. We will make a reasonable attempt to grade as much of ydamisgion as possible, but

features that cannot be tested will receive no credit. Famge: if your allocator segfaults
during cache creation, no further testing is possible, andwill receive no credit for all
other components as well.

4 Administrivia

1. In this project, you may work in teams of two.
2. The project is due on Monday, March’3 You are strongly encouragewt to delay on
starting this project!

3. You maynot make reference to any existing slab allocator implemeat the course of
this assignment.

Bibliography

[1] Jeff Bonwick, The slab allocator: An object-caching kernel memory allocator. In USENIX
Summer 1996 conference, pages 87-98, 1994.

[2] Jeff Bonwick and Jonathan AdamBlagazines and vmem: Extending the slab allocator to
many cpu’s and arbitrary resources. In Proc. 2001 USENIX Technical Conference, 2001.

