
Slab Allocator Project

5th February 2007

1 The Project

In this project you must implement the slab allocator as described in Jeff Bonwick’s paper [1].
Your implementation must conform to the interface specification given in Appendix A (which is
self explanatory). Your result should be designed as a library that implements the above interface.
Your implementation must keep the total internal fragmentation below 12.5%. The differences
with respect to Bonwick’s paper are:

1. The assignment is to implement anapplication level slab allocator (not a kernel memory
allocator). This allocator should obtain its storage usingthe mmap() system call, which
allocates a specified number ofpages.

2. Slab deletion is done whenever thekmem cache reap() call is made, not in response to
memory pressure. (usemunmap() to return the memory to the operating system.

3. You donot have to implement the self-scaling hash table alluded to in section 3.2.3 of the
paper [1] – this is surprisingly hard to do well. You can use a simple, unbalanced binary tree
implementation or borrow an existing AVL tree implementation (note that this data structure
must be able to handle delete operations).

At /home/slab on the machinecs418.cs.jhu.edu, you will find the following files:

1. slab.h – The interface specification.

2. slab-tester – A sample testing program. There are certain compile time switches within
the program. You can use them to control the degree of testingwhile dev elopement.

3. objects.def – Object definitions for the test program. Feel free to add other object
definitions in the same pattern for extended testing.

4. Makefile – the Makefile.

5. slab.c – a stub of implementation file.

You must submit implementation files along with the updatedMakefile as a tarball.

1

2 Notes

1. You must not makeany changes to the header file.

2. You can obtain the correct value for PAGESIZE by including/usr/include/sys/user.h.

3. Your implementationmust not use malloc() ever.

4. Your implementation must not rely on the test program for anything.

5. You are strongly encouraged to keep the-Wall -Werror options to the C compiler. Most
warnings are genuine errors.

6. You are encouraged to study the test program as it serves asextended behavior specification.
You are also encouraged to start using it as early as possible.

7. Based on previous years’ experience, you arestrongly encouraged to use a configuration
management system (CVS and Subversion are installed oncs418).

3 Grading

1. Grading will be based on

• Whether your allocator works correctly (without faults).

• Whether particular things that the allocator needs to do work correctly:

– Object Caching.

– Slab size selection – handling small/large/huge objects.

– Slab allocation and deallocation.

– Allocation and deallocation of backing store.

– Coloring.

• Code Quality.

• Correct implementation of the debugging interface.

2. A testing program is provided for your convenience. We reserve the right to run other test
cases.

3. Your homework will be tested on thecs418 machine, and must therefore compile and run
on it.

4. Code that does not compile,#ifdefed /commented out code,etc. will receive no credit.

5. We will make a reasonable attempt to grade as much of your submission as possible, but
features that cannot be tested will receive no credit. For example: if your allocator segfaults
during cache creation, no further testing is possible, and you will receive no credit for all
other components as well.

2

4 Administrivia

1. In this project, you may work in teams of two.

2. The project is due on Tuesady February 27th at 4pm. You are strongly encouragednot to
delay on starting this project!

3. You maynot make reference to any existing slab allocator implementation in the course of
this assignment.

Appendix A: Slab Allocator Interface

#ifndef SLAB H
#define SLAB H

/**
EN 600.318/418 Operating Systems
Slab Allocator Project.

This header is a modified version of the interface written by
Prof. Jonathan S Shapiro.

***/

/**
General Notes:

1) This is a modified version of the Jeff Bonwik’s slab allocator.
2) You must provide an implementation for all of the following

functions.
3) All invalid arguments must result in an assert() failure

(not a segmentation fault).
4) If any PRECONDITIONS fail, it must result in an assert() failure

and thus terminate the program.

***/

#include <unistd.h>

/**
Main allocator interface

***/

/* Create a cache that produces objects of the specified size and
alignment, that will be constructed and destructed using the
specified constructor and destructor. */

struct kmem cache *
kmem cache create(char *name,

3

size t size,
int align,
void (*constructor)(void *, size t),
void (*destructor)(void *, size t));

/* Destroy an entire cache, including all of its slabs.
PRECONDITION: The cache referred to by ‘cp’ has no slabs containing

active objects. */
void kmem cache destroy(struct kmem cache *cp);

/* Allocate an object from a previously allocated cache. Allocates a
new underlying slab if needed. Note that this does NOT take a flags
argument, which is different from the paper! */

void *kmem cache alloc(struct kmem cache *cp);

/* Deallocate an object, returning its storage to the cache.
PRECONDITION: Object ‘buf’ must belong to cache ‘cp’. */

void kmem cache free(struct kmem cache *cp, void *buf);

/* Free all empty slabs in the cache ‘cp’, and return the allocated
pages to the main backend store. This function returns the number
of pages freed.

This is a backend ‘‘interface’’ to trigger garbage collection. */
size t kmem cache reap(struct kmem cache *cp);

/***
* Debugging interface

***/

/* Return the number of slabs in a cache */
size t
debug get nslabs(struct kmem cache *cp);

/* Return a pointer to the i’th slab associated with the given cache,
where i=0 gives the first such slab.

If there is no i’th slab, you must return a NULL pointer
(not an assert() failure).

The pointer to the slab header should remain
valid until the next call that frees a slab or a cache. */

struct slab header *
debug get slab(struct kmem cache *cp, size t i);

struct slab query

4

/* color: the offset IN BYTES from the start of the slab at which
the first object appears */

size t color;
size t size; /* size of objects in this slab */
size t align; /* alignment of objects in this slab */
unsigned nFree; /* number of free objects in this slab*/
unsigned nAlloc; /* number of allocated objects in this
slab*/

;

/* Given a slab pointer (previously returned by debug get slab()) and
a pointer to its containing cache, return the information in the
slab query structure defined above. */

struct slab query
debug get slab info(struct kmem cache *cp, struct slab header *slab);

/* Return a pointer to the cache header for the cache of cache headers */
struct kmem cache *debug get cacheheader cache();

/* Return a pointer to the cache header for the bufctl cache, if such
a cache currently exists, or NULL if it does not: */

struct kmem cache *debug get bufctl cache();

#endif /* SLAB H */

Bibliography

[1] Jeff Bonwick, The slab allocator: An object-caching kernel memory allocator. In USENIX
Summer 1996 conference, pages 87–98, 1994.
[2] Jeff Bonwick and Jonathan Adams,Magazines and vmem: Extending the slab allocator to
many cpu’s and arbitrary resources. In Proc. 2001 USENIX Technical Conference, 2001.

5

