Slab Allocator Project

5" February 2007

1 The Project

In this project you must implement the slab allocator as «llesd in Jeff Bonwick’s paper [1].
Your implementation must conform to the interface spediicagiven in Appendix A (which is
self explanatory). Your result should be designed as arlyitfaat implements the above interface.
Your implementation must keep the total internal fragmeotabelow 12.5%. The differences
with respect to Bonwick’s paper are:

1. The assignment is to implement application level slab allocator rfot a kernel memory
allocator). This allocator should obtain its storage udimgnmmap() system call, which
allocates a specified numberusges.

2. Slab deletion is done whenever theemcache_r eap() call is made, not in response to
memory pressure. (useunmap() to return the memory to the operating system.

3. You donot have to implement the self-scaling hash table alluded t@atien 3.2.3 of the
paper [1] — this is surprisingly hard to do well. You can usé@apte, unbalanced binary tree
implementation or borrow an existing AVL tree implementat(note that this data structure
must be able to handle delete operations).

At / hone/ sl ab on the machines418. cs. j hu. edu, you will find the following files:
1. sl ab. h — The interface specification.

2. sl ab-t est er — A sample testing program. There are certain compile timtches within
the program. You can use them to control the degree of testinig dev elopement.

3. obj ect s. def — Object definitions for the test program. Feel free to adcotibject
definitions in the same pattern for extended testing.

4. Makefi | e —the Makefile.
5. sl ab. ¢ — a stub of implementation file.

You must submit implementation files along with the updatb#ef i | e as a tarball.

2 Notes

3

a b W0 N P

. You must not makany changes to the header file.

. You can obtain the correct value for PAGEZE by including usr /i ncl ude/ sys/ user. h.
. Your implementatiomust not use mal | oc() ever.

. Your implementation must not rely on the test program forthing.

. You are strongly encouraged to keep il | - Wer r or options to the C compiler. Most

warnings are genuine errors.

. You are encouraged to study the test program as it senedesded behavior specification.

You are also encouraged to start using it as early as possible

. Based on previous years’ experience, yousdrengly encouraged to use a configuration

management system (CVS and Subversion are installet dd 8).

Grading

. Grading will be based on

e Whether your allocator works correctly (without faults).
e Whether particular things that the allocator needs to ddkworrectly:
— Object Caching.
— Slab size selection — handling small/large/huge objects.
— Slab allocation and deallocation.
— Allocation and deallocation of backing store.
— Coloring.
e Code Quality.
e Correct implementation of the debugging interface.

. A testing program is provided for your convenience. Weres the right to run other test

cases.

. Your homework will be tested on tless418 machine, and must therefore compile and run

on it.

. Code that does not compil#, f def ed /commented out codetc. will receive no credit.

. We will make a reasonable attempt to grade as much of yduamission as possible, but

features that cannot be tested will receive no credit. Farmgde: if your allocator segfaults
during cache creation, no further testing is possible, ama will receive no credit for all
other components as well.

4 Administrivia

1. In this project, you may work in teams of two.

2. The project is due on Tuesady February"2at 4pm. You are strongly encouragadt to
delay on starting this project!

3. You maynot make reference to any existing slab allocator implemeontati the course of
this assignment.

Appendix A: Slab Allocator Interface

#i f ndef SLAB_H
#defi ne SLABH

/**

EN 600. 318/ 418 Qperating Systens
Sl ab Al l ocator Project.

This header is a nodified version of the interface witten by
Prof. Jonat han S Shapiro.

***/

/**

General Notes:

1) This is a nodified version of the Jeff Bonwi k’s slab all ocator.
2) You must provide an inplenentation for all of the foll ow ng

functions.
3) Al invalid argunents nust result in an assert() failure
(not a segnentation fault).
4) If any PRECONDI TIONS fail, it must result in an assert() failure

and thus term nate the program

***/

#i ncl ude <uni std. h>

/**

Main all ocator interface

***/

[+ Create a cache that produces objects of the specified size and
alignment, that will be constructed and destructed using the
specified constructor and destructor. =*/

struct knmemcache =

kmemcache_cr eat e(char *nane,

sizet size,

int align,

void (*constructor)(void *, sizelt),
void (*destructor)(void *, sizet));

/+ Destroy an entire cache, including all of its sl abs.
PRECONDI TI ON: The cache referred to by ‘cp’ has no slabs contai ni ng
active objects. =/
voi d knmemcache_destroy(struct knmemcache *cp);

[+ Allocate an object froma previously allocated cache. Allocates a
new underlying slab if needed. Note that this does NOT take a flags
argument, which is different fromthe paper! =/

voi d *knemcache_al | oc(struct knemcache *cp);

[+ Deal | ocate an object, returning its storage to the cache.
PRECONDI TI ON: Obj ect *‘ buf’ mnust belong to cache ‘cp’ . =*/
voi d knmemcachefree(struct kmemcache *cp, void xbuf);

[+ Free all enpty slabs in the cache ‘cp’, and return the all ocated
pages to the main backend store. This function returns the nunber
of pages freed.

This is a backend ‘‘interface’’ to trigger garbage collection. x/
si zet kmemcache_reap(struct knmemcache *cp);

/***

* Debugging i nterface

***/

[+ Return the nunber of slabs in a cache */
si ze_t
debug_get _nsl abs(struct knemcache *cp);

[+ Return a pointer to the i’th slab associated with the given cache,
where i =0 gives the first such slab

If thereis noi’th slab, you _nust_return a NULL pointer
(not an assert() failure).

The pointer to the slab_header should renain

valid until the next call that frees a slab or a cache. =/
struct sl ab_header =
debug_get sl ab(struct knemcache *cp, sizet i);

struct sl ab_query

I+ color: the offset IN BYTES fromthe start of the slab at which
the first object appears =*/

sizet color;

sizet size; [+ size of objects in this slab */

sizet align; /* alignment of objects in this slab */

unsi gned nFree; /* nunber of free objects in this slabx/

unsi gned nAlloc; /* nunber of allocated objects in this

sl ab*/

[+ Gven a slab pointer (previously returned by debug.get slab()) and
a pointer to its containing cache, return the information in the
sl ab_query structure defined above. x/

struct slab_query

debug_get sl ab_i nf o(struct knemcache *cp, struct sl ab_header =*slab);

/* Return a pointer to the cache header for the cache of cache headers =*/
struct knemcache *debug_get cacheheader cache();

/* Return a pointer to the cache header for the bufctl cache, if such
a cache currently exists, or NULL if it does not: =/
struct knemcache xdebug_get _bufctl _cache();

#endi f /* SLABH */

Bibliography

[1] Jeff Bonwick, The slab allocator: An object-caching kernel memory allocator. In USENIX
Summer 1996 conference, pages 87-98, 1994.

[2] Jeff Bonwick and Jonathan Adamblagazines and vmem: Extending the slab allocator to
many cpu’s and arbitrary resources. In Proc. 2001 USENIX Technical Conference, 2001.

